Suppr超能文献

基于结构的药物设计中蛋白质靶标的结合位点检测和可药性预测。

Binding site detection and druggability prediction of protein targets for structure-based drug design.

机构信息

Center for Quantitative Biology, Peking University, Beijing 100871, China.

出版信息

Curr Pharm Des. 2013;19(12):2326-33. doi: 10.2174/1381612811319120019.

Abstract

Assessing whether a protein structure is a good target or not before actually doing structure-based drug design on it is an important step to speed up the ligand discovery process. This is known as the "druggability" or "ligandability" assessment problem that has attracted increasing interest in recent years. The assessment typically includes the detection of ligand-binding sites on the protein surface and the prediction of their abilities to bind drug-like small molecules. A brief summary of the established methods of binding sites detection and druggability(ligandability) prediction, as well as a detailed description of the CAVITY approach developed in the authors' group was given. CAVITY showed good performance on ligand-binding site detection, and was successfully used to predict both the ligandabilities and druggabilities of the detected binding sites.

摘要

在实际进行基于结构的药物设计之前,评估蛋白质结构是否为良好的靶标是加速配体发现过程的重要步骤。这被称为“可成药性”或“配体结合能力”评估问题,近年来引起了越来越多的关注。评估通常包括检测蛋白质表面上的配体结合位点,并预测它们与类药小分子结合的能力。本文简要总结了已建立的结合位点检测方法和可成药性(配体结合能力)预测方法,并详细描述了作者所在团队开发的 CAVITY 方法。CAVITY 在配体结合位点检测方面表现出良好的性能,并成功用于预测检测到的结合位点的配体结合能力和可成药性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验