Suppr超能文献

用于活细胞中单分子成像的视频速率共焦显微镜和超分辨率荧光成像。

Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging.

机构信息

Department of Physics and Astronomy, Seoul National University, Seoul, Korea.

出版信息

Biophys J. 2012 Oct 17;103(8):1691-7. doi: 10.1016/j.bpj.2012.09.014. Epub 2012 Oct 16.

Abstract

There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass.

摘要

目前还没有专为活细胞中单分子成像和超分辨率荧光成像而优化的共聚焦显微镜。通过结合线扫描方法的快速性和宽场检测的高灵敏度,我们开发了一种在我们所知的新型共焦荧光显微镜,具有良好的光学切片能力(1.0μm)、快速的帧率(<33 fps)和卓越的荧光检测效率。该显微镜与传统细胞成像技术完全兼容,使得我们可以轻松地在活细胞的任意深度进行单分子成像。使用新的显微镜,我们在活细胞的基底和顶表面监测了荧光标记的 cAMP 受体的扩散运动,并在从盖玻片表面 0-85μm 的深度范围内获得了 COS-7 细胞微管的超分辨率荧光图像。

相似文献

1
Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging.
Biophys J. 2012 Oct 17;103(8):1691-7. doi: 10.1016/j.bpj.2012.09.014. Epub 2012 Oct 16.
2
Robust scan synchronized force-fluorescence imaging.
Ultramicroscopy. 2021 Feb;221:113165. doi: 10.1016/j.ultramic.2020.113165. Epub 2020 Nov 15.
3
Three-Color Simultaneous Live Imaging of Autophagy-Related Structures.
Methods Mol Biol. 2019;1880:223-230. doi: 10.1007/978-1-4939-8873-0_14.
4
Single-molecule fluorescence imaging in living cells.
Annu Rev Phys Chem. 2013;64:459-80. doi: 10.1146/annurev-physchem-040412-110127. Epub 2013 Jan 16.
5
Superresolution fluorescence microscopy for 3D reconstruction of thick samples.
Mol Brain. 2018 Mar 15;11(1):17. doi: 10.1186/s13041-018-0361-z.
6
Live cell spinning disk microscopy.
Adv Biochem Eng Biotechnol. 2005;95:57-75. doi: 10.1007/b102210.
8
High-speed confocal fluorescence imaging with a novel line scanning microscope.
J Biomed Opt. 2006 Nov-Dec;11(6):064011. doi: 10.1117/1.2402110.
9
Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.
Mol Biol Cell. 2015 May 1;26(9):1743-51. doi: 10.1091/mbc.E14-08-1287. Epub 2015 Feb 25.
10
In vivo STED microscopy: A roadmap to nanoscale imaging in the living mouse.
Methods. 2020 Mar 1;174:42-48. doi: 10.1016/j.ymeth.2019.05.020. Epub 2019 May 24.

引用本文的文献

1
Unravelling the Mystery inside Cells by Using Single-Molecule Fluorescence Imaging.
J Imaging. 2023 Sep 19;9(9):192. doi: 10.3390/jimaging9090192.
2
Formation of cellular close-ended tunneling nanotubes through mechanical deformation.
Sci Adv. 2022 Apr;8(13):eabj3995. doi: 10.1126/sciadv.abj3995. Epub 2022 Mar 30.
3
Microscopic Imaging Methods for Organ-on-a-Chip Platforms.
Micromachines (Basel). 2022 Feb 19;13(2):328. doi: 10.3390/mi13020328.
5
Optimizing the performance of multiline-scanning confocal microscopy.
J Phys D Appl Phys. 2020 Mar 11;54(10). doi: 10.1088/1361-6463/abc84b. Epub 2020 Dec 23.
6
Fluorescence imaging with tailored light.
Nanophotonics. 2019 Dec;8(12):2111-2128. doi: 10.1515/nanoph-2019-0227. Epub 2019 Sep 28.
7
Three-Dimensional Single-Molecule Localization Microscopy in Whole-Cell and Tissue Specimens.
Annu Rev Biomed Eng. 2020 Jun 4;22:155-184. doi: 10.1146/annurev-bioeng-060418-052203. Epub 2020 Apr 3.
8
Imaging through the Whole Brain of Drosophila at λ/20 Super-resolution.
iScience. 2019 Apr 26;14:164-170. doi: 10.1016/j.isci.2019.03.025. Epub 2019 Mar 28.
9
Accelerated FRET-PAINT microscopy.
Mol Brain. 2018 Nov 22;11(1):70. doi: 10.1186/s13041-018-0414-3.
10
Single-Molecule Light-Sheet Imaging of Suspended T Cells.
Biophys J. 2018 May 8;114(9):2200-2211. doi: 10.1016/j.bpj.2018.02.044.

本文引用的文献

1
Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans.
Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17708-13. doi: 10.1073/pnas.1108494108. Epub 2011 Oct 17.
2
Live-cell 3D super-resolution imaging in thick biological samples.
Nat Methods. 2011 Oct 9;8(12):1047-9. doi: 10.1038/nmeth.1744.
3
Central dogma at the single-molecule level in living cells.
Nature. 2011 Jul 20;475(7356):308-15. doi: 10.1038/nature10315.
4
Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination.
Nat Methods. 2011 May;8(5):417-23. doi: 10.1038/nmeth.1586. Epub 2011 Mar 4.
5
Breaking the diffraction barrier: super-resolution imaging of cells.
Cell. 2010 Dec 23;143(7):1047-58. doi: 10.1016/j.cell.2010.12.002.
6
Light sheet microscopy for single molecule tracking in living tissue.
PLoS One. 2010 Jul 23;5(7):e11639. doi: 10.1371/journal.pone.0011639.
7
Single-molecule spectroscopy and imaging of biomolecules in living cells.
Anal Chem. 2010 Mar 15;82(6):2192-203. doi: 10.1021/ac9024889.
9
Thin laser light sheet microscope for microbial oceanography.
Opt Express. 2002 Jan 28;10(2):145-54. doi: 10.1364/oe.10.000145.
10
Improved sectioning in a slit scanning confocal microscope.
Opt Lett. 2008 Aug 15;33(16):1813-5. doi: 10.1364/ol.33.001813.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验