Suppr超能文献

验证自动化叶段分割对 8-14 岁囊性纤维化患儿吸气-呼气胸部 CT 的效果。

Validation of automated lobe segmentation on paired inspiratory-expiratory chest CT in 8-14 year-old children with cystic fibrosis.

机构信息

Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Baden-Württemberg, Germany.

Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Baden-Württemberg, Germany.

出版信息

PLoS One. 2018 Apr 9;13(4):e0194557. doi: 10.1371/journal.pone.0194557. eCollection 2018.

Abstract

OBJECTIVES

Densitometry on paired inspiratory and expiratory multidetector computed tomography (MDCT) for the quantification of air trapping is an important approach to assess functional changes in airways diseases such as cystic fibrosis (CF). For a regional analysis of functional deficits, an accurate lobe segmentation algorithm applicable to inspiratory and expiratory scans is beneficial.

MATERIALS AND METHODS

We developed a fully automated lobe segmentation algorithm, and subsequently validated automatically generated lobe masks (ALM) against manually corrected lobe masks (MLM). Paired inspiratory and expiratory CTs from 16 children with CF (mean age 11.1±2.4) acquired at 4 time-points (baseline, 3mon, 12mon, 24mon) with 2 kernels (B30f, B60f) were segmented, resulting in 256 ALM. After manual correction spatial overlap (Dice index) and mean differences in lung volume and air trapping were calculated for ALM vs. MLM.

RESULTS

The mean overlap calculated with Dice index between ALM and MLM was 0.98±0.02 on inspiratory, and 0.86±0.07 on expiratory CT. If 6 lobes were segmented (lingula treated as separate lobe), the mean overlap was 0.97±0.02 on inspiratory, and 0.83±0.08 on expiratory CT. The mean differences in lobar volumes calculated in accordance with the approach of Bland and Altman were generally low, ranging on inspiratory CT from 5.7±52.23cm3 for the right upper lobe to 17.41±14.92cm3 for the right lower lobe. Higher differences were noted on expiratory CT. The mean differences for air trapping were even lower, ranging from 0±0.01 for the right upper lobe to 0.03±0.03 for the left lower lobe.

CONCLUSIONS

Automatic lobe segmentation delivers excellent results for inspiratory and good results for expiratory CT. It may become an important component for lobe-based quantification of functional deficits in cystic fibrosis lung disease, reducing necessity for user-interaction in CT post-processing.

摘要

目的

在多排螺旋 CT(MDCT)吸气相与呼气相进行密度测定,以量化空气潴留,这是评估气道疾病(如囊性纤维化(CF))功能变化的重要方法。为了进行区域性功能缺陷分析,应用于吸气相与呼气相扫描的准确的肺叶分割算法是有益的。

材料和方法

我们开发了一种全自动的肺叶分割算法,随后将自动生成的肺叶掩模(ALM)与手动校正的肺叶掩模(MLM)进行了验证。对 16 例 CF 患儿(平均年龄 11.1±2.4 岁)在 4 个时间点(基线、3 个月、12 个月、24 个月)采集的 2 种内核(B30f、B60f)的吸气相与呼气相 CT 进行分割,得到 256 个 ALM。在手动校正后,计算 ALM 与 MLM 之间的空间重叠(Dice 指数)和肺容积与空气潴留的平均差异。

结果

在吸气相和呼气相 CT 上,ALM 与 MLM 之间的 Dice 指数平均重叠率分别为 0.98±0.02 和 0.86±0.07。如果将 6 个肺叶进行分割(将舌叶视为单独的肺叶),则吸气相和呼气相 CT 的平均重叠率分别为 0.97±0.02 和 0.83±0.08。按照 Bland 和 Altman 的方法计算的各叶体积的平均差异通常较低,在吸气相 CT 上,从右上叶的 5.7±52.23cm3 到右下叶的 17.41±14.92cm3。在呼气相 CT 上,差异较大。空气潴留的平均差异更小,从右上叶的 0±0.01 到左下叶的 0.03±0.03。

结论

自动肺叶分割在吸气相上的结果非常好,在呼气相上的结果也很好。它可能成为基于肺叶的 CF 肺部疾病功能缺陷定量分析的一个重要组成部分,减少了 CT 后处理中用户交互的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f896/5890971/541465ea2655/pone.0194557.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验