Matrix Dynamics Group, and Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 3E2, Canada.
Mol Microbiol. 2012 Dec;86(5):1116-31. doi: 10.1111/mmi.12045. Epub 2012 Oct 24.
Systemic dissemination of microbial pathogens permits microbes to spread from the initial site of infection to secondary target tissues and is responsible for most mortality due to bacterial infections. Dissemination is a critical stage of disease progression by the Lyme spirochaete, Borrelia burgdorferi. However, many mechanistic features of the process are not yet understood. A key step is adhesion of circulating microbes to vascular surfaces in the face of the shear forces present in flowing blood. Using real-time microscopic imaging of the Lyme spirochaete in living mice we previously identified the first bacterial protein (B. burgdorferi BBK32) shown to mediate vascular adhesion in vivo. Vascular adhesion is also dependent on host fibronectin (Fn) and glycosaminoglycans (GAGs). In the present study, we investigated the mechanisms of BBK32-dependent vascular adhesion in vivo. We determined that BBK32-Fn interactions (tethering) function as a molecular braking mechanism that permits the formation of more stable BBK32-GAG interactions (dragging) between circulating bacteria and vascular surfaces. Since BBK32-like proteins are expressed in a variety of pathogens we believe that the vascular adhesion mechanisms we have deciphered here may be critical for understanding the dissemination mechanisms of other bacterial pathogens.
微生物病原体的全身性传播使微生物能够从初始感染部位传播到继发性靶组织,并导致大多数细菌性感染的死亡。传播是莱姆螺旋体(Borrelia burgdorferi)疾病进展的关键阶段。然而,该过程的许多机制特征尚不清楚。一个关键步骤是循环中的微生物在流动血液中的剪切力作用下黏附在血管表面。使用活体小鼠中莱姆螺旋体的实时显微镜成像,我们之前确定了第一个介导体内血管黏附的细菌蛋白(B. burgdorferi BBK32)。血管黏附也依赖于宿主纤维连接蛋白(Fn)和糖胺聚糖(GAG)。在本研究中,我们研究了体内 BBK32 依赖性血管黏附的机制。我们确定 BBK32-Fn 相互作用(系留)作为一种分子制动机制,允许在循环细菌和血管表面之间形成更稳定的 BBK32-GAG 相互作用(拖动)。由于 BBK32 样蛋白在多种病原体中表达,我们认为我们在这里破译的血管黏附机制可能对理解其他细菌病原体的传播机制至关重要。