Department of Chemical and Biological Engineering, State University of New York, Buffalo, New York 14260, United States.
J Phys Chem A. 2012 Nov 29;116(47):11618-42. doi: 10.1021/jp303692v. Epub 2012 Nov 12.
Molecular hydrogen plays multiple roles in activation of nitrogen. Among others, it inhibits the overall process of N(2)-reduction catalyzed by nitrogenase enzyme. The H(2)-assisted dehydrogenation and the H-atom transfer reactions (called dihydrogen catalysis, DHC) are suggested as possible mechanisms for the degradation and removal of potential intermediates formed during the reduction of nitrogen. Several iron-organic model reactions associated with the core stereospecific reaction (cis-N(2)H(2) + H(2) → N(2) + H(2) + H(2)) are examined using a comprehensive density functional theory and ab initio analysis of the corresponding potential energy surfaces. A variety of energetically feasible decomposition pathways are identified for the DHC-oxidation of iron-bound [N(x)H(y)]-species. A liberated diazene intermediate (HN═NH) is suggested to interact in situ with two proximal hydridic H-atoms of an activated (hydrided) Fe-catalyst to produce N(2) and H(2) with a low or even no activation barrier. The majority of identified pathways are shown to be highly sensitive to the electronic environment and spin configuration of metallocomplexes. The H(2)-assisted transport of a single H-atom from a bound [N(x)H(y)] moiety to either the proximal or distal (Fe, S or N) active centers of a catalyst provides an alternative degradation (interconversion) mechanism for the relevant intermediates. The two types of molecular hydrogen-assisted reactions highlighted above, namely, the H(2)-assisted dehydrogenation and the transport of H-atoms, suggest theoretical interpretations for the observed H(2)-inhibition of N(2) activation and HD formation (in the presence of D(2)). The DHC reactions of various [N(x)H(y)] moieties are expected to play significant roles in the industrial high-pressure hydrodenitrification and other catalytic processes involving the metabolism of molecular hydrogen.
分子氢在氮的活化中起多种作用。其中,它抑制由氮酶催化的 N(2)-还原的整体过程。H(2)-辅助脱氢和 H-原子转移反应(称为双氢催化,DHC)被认为是降解和去除还原过程中形成的潜在中间产物的可能机制。使用全面的密度泛函理论和相应势能面的从头算分析,研究了几种与核心立体专一性反应(cis-N(2)H(2) + H(2) → N(2) + H(2) + H(2))相关的铁有机模型反应。为 DHC-氧化铁结合的 [N(x)H(y)]-物种确定了各种能量可行的分解途径。释放的二氮烯中间体(HN═NH)被建议与活化(氢化)Fe-催化剂的两个近邻氢原子原位相互作用,以低或甚至没有活化能垒产生 N(2)和 H(2)。大多数鉴定的途径都显示出对金属配合物的电子环境和自旋构型高度敏感。从结合的 [N(x)H(y)]部分将单个 H-原子转移到催化剂的近邻或远(Fe、S 或 N)活性中心的 H(2)-辅助传输为相关中间体提供了替代的降解(相互转化)机制。上述两种类型的分子氢辅助反应,即 H(2)-辅助脱氢和 H-原子的传输,为观察到的 H(2)抑制 N(2)活化和 HD 形成(在 D(2)存在下)提供了理论解释。各种 [N(x)H(y)]部分的 DHC 反应预计将在涉及分子氢代谢的工业高压加氢脱氮和其他催化过程中发挥重要作用。