Suppr超能文献

映射 P50 诱发电位反应的重复抑制与人类大脑皮层的关系。

Mapping repetition suppression of the P50 evoked response to the human cerebral cortex.

机构信息

Wayne State University, School of Medicine, Department of Psychiatry and Behavioral Neurosciences, Detroit, MI, USA.

出版信息

Clin Neurophysiol. 2013 Apr;124(4):675-85. doi: 10.1016/j.clinph.2012.10.007. Epub 2012 Nov 4.

Abstract

OBJECTIVE

The cerebral network subserving repetition suppression (RS) of the P50 auditory evoked response as observed using paired-identical-stimulus (S1-S2) paradigms is not well-described.

METHODS

We analyzed S1-S2 data from electrodes placed on the cortices of 64 epilepsy patients. We identified regions with maximal amplitude responses to S1 (i.e., stimulus registration), regions with maximal suppression of responses to S2 relative to S1 (i.e., RS), and regions with no or minimal RS 30-80 ms post stimulation.

RESULTS

Several temporal, parietal and cingulate area regions were shown to have significant initial registration activity (i.e., strong P50 response to S1). Moreover, prefrontal, cingulate, and parietal lobe regions not previously proposed to be part of the P50 habituation neural circuitry were found to exhibit significant RS.

CONCLUSIONS

The data suggest that the neural network underlying the initial phases of the RS process may include regions not previously thought to be involved like the parietal and cingulate cortexes. In addition, a significant role for the frontal lobe in mediating this function is supported.

SIGNIFICANCE

A number of regions of interest are identified through invasive recording that will allow further probing of the RS function using less invasive technology.

摘要

目的

使用成对相同刺激(S1-S2)范式观察到的 P50 听觉诱发电应的重复抑制(RS)的大脑网络描述得还不够清楚。

方法

我们分析了 64 名癫痫患者皮质部位的 S1-S2 数据。我们确定了对 S1 具有最大幅度反应的区域(即刺激登记)、对 S2 相对于 S1 的反应具有最大抑制的区域(即 RS)以及刺激后 30-80 毫秒没有或最小 RS 的区域。

结果

几个颞叶、顶叶和扣带回区域显示出显著的初始登记活动(即对 S1 有强烈的 P50 反应)。此外,先前未被提出是 P50 习惯化神经回路一部分的额叶、扣带回和顶叶区域被发现表现出显著的 RS。

结论

数据表明,RS 过程初始阶段的神经网络可能包括以前认为不参与的区域,如顶叶和扣带回皮层。此外,还支持额叶在介导这种功能方面的重要作用。

意义

通过侵入性记录确定了一些感兴趣的区域,这将允许使用更少侵入性的技术进一步探测 RS 功能。

相似文献

1
Mapping repetition suppression of the P50 evoked response to the human cerebral cortex.
Clin Neurophysiol. 2013 Apr;124(4):675-85. doi: 10.1016/j.clinph.2012.10.007. Epub 2012 Nov 4.
2
Mapping repetition suppression of the N100 evoked response to the human cerebral cortex.
Biol Psychiatry. 2011 May 1;69(9):883-9. doi: 10.1016/j.biopsych.2010.12.011. Epub 2011 Jan 28.
3
Towards a functional topography of sensory gating areas: invasive P50 recording and electrical stimulation mapping in epilepsy surgery candidates.
Psychiatry Res. 2007 Jul 15;155(2):121-33. doi: 10.1016/j.pscychresns.2006.10.003. Epub 2007 May 21.
5
Effects of stimuli intensity and frequency on auditory p50 and n100 sensory gating.
Adv Exp Med Biol. 2010;657:5-17. doi: 10.1007/978-0-387-79100-5_1.
6
Sensory gating of auditory evoked and induced gamma band activity in intracranial recordings.
Neuroimage. 2006 Aug 15;32(2):790-8. doi: 10.1016/j.neuroimage.2006.04.203. Epub 2006 Jun 30.
7
Auditory evoked potential variability in healthy and schizophrenia subjects.
Clin Neurophysiol. 2010 Aug;121(8):1233-9. doi: 10.1016/j.clinph.2010.03.006. Epub 2010 Apr 2.
9
Auditory verbal hallucinations in schizophrenia correlate with P50 gating.
Clin Neurophysiol. 2013 Jul;124(7):1329-35. doi: 10.1016/j.clinph.2013.02.004. Epub 2013 Mar 11.
10
Short-term habituation of the intracranially recorded auditory evoked potentials P50 and N100.
Neurosci Lett. 2004 Dec 6;372(3):245-9. doi: 10.1016/j.neulet.2004.09.047.

引用本文的文献

1
Auditory gating and its clinical correlates in adults with chronic tic disorder and neurotypical adults.
Clin Neurophysiol. 2024 Dec;168:72-82. doi: 10.1016/j.clinph.2024.10.006. Epub 2024 Oct 19.
2
Gap pre-pulse inhibition of the cortical auditory evoked potentials as a possible objective tinnitus assessment tool.
Iran J Child Neurol. 2023 Fall;17(4):117-136. doi: 10.22037/ijcn.v17i4.42300. Epub 2023 Oct 26.
3
4
Distinct interacting cortical networks for stimulus-response and repetition-suppression.
Commun Biol. 2022 Sep 5;5(1):909. doi: 10.1038/s42003-022-03861-4.
5
Schizophrenia, Bipolar Disorder and Pre-Attentional Inhibitory Deficits.
Neuropsychiatr Dis Treat. 2022 Apr 8;18:821-827. doi: 10.2147/NDT.S352157. eCollection 2022.
6
Past and Future Explanations for Depersonalization and Derealization Disorder: A Role for Predictive Coding.
Front Hum Neurosci. 2022 Mar 7;16:744487. doi: 10.3389/fnhum.2022.744487. eCollection 2022.
7
Auditory Sensory Gating in Children With Cochlear Implants: A P50-N100-P200 Study.
Front Neurosci. 2021 Dec 6;15:768427. doi: 10.3389/fnins.2021.768427. eCollection 2021.
8
Acute Stress and Gender Effects in Sensory Gating of the Auditory Evoked Potential in Healthy Subjects.
Neural Plast. 2021 Mar 12;2021:8529613. doi: 10.1155/2021/8529613. eCollection 2021.
9
P50, N100, and P200 Auditory Sensory Gating Deficits in Schizophrenia Patients.
Front Psychiatry. 2020 Aug 27;11:868. doi: 10.3389/fpsyt.2020.00868. eCollection 2020.
10
Dysfunction of Inferior Parietal Lobule During Sensory Gating in Patients With Amnestic Mild Cognitive Impairment.
Front Aging Neurosci. 2020 Feb 25;12:39. doi: 10.3389/fnagi.2020.00039. eCollection 2020.

本文引用的文献

1
Relevance of attention in auditory sensory gating paradigms in schizophrenia A pilot study.
J Psychophysiol. 2011;25(2):60-66. doi: 10.1027/0269-8803/a000042.
3
Mapping repetition suppression of the N100 evoked response to the human cerebral cortex.
Biol Psychiatry. 2011 May 1;69(9):883-9. doi: 10.1016/j.biopsych.2010.12.011. Epub 2011 Jan 28.
4
Probing the relative contribution of the first and second responses to sensory gating indices: a meta-analysis.
Psychophysiology. 2011 Jul;48(7):980-92. doi: 10.1111/j.1469-8986.2010.01168.x. Epub 2011 Jan 7.
5
More evidence to support the role of S2 in P50 studies.
Schizophr Res. 2010 Sep;122(1-3):270-2. doi: 10.1016/j.schres.2010.05.026. Epub 2010 Jun 17.
6
Relationships between sensory "gating out" and sensory "gating in" of auditory evoked potentials in schizophrenia: a pilot study.
Schizophr Res. 2010 Aug;121(1-3):139-45. doi: 10.1016/j.schres.2010.04.020. Epub 2010 May 26.
7
Neuroelectromagnetic forward head modeling toolbox.
J Neurosci Methods. 2010 Jul 15;190(2):258-70. doi: 10.1016/j.jneumeth.2010.04.031. Epub 2010 May 8.
8
Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling.
J Neurosci. 2009 Nov 18;29(46):14496-505. doi: 10.1523/JNEUROSCI.4004-09.2009.
10
ALE Meta-Analysis Workflows Via the Brainmap Database: Progress Towards A Probabilistic Functional Brain Atlas.
Front Neuroinform. 2009 Jul 9;3:23. doi: 10.3389/neuro.11.023.2009. eCollection 2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验