Suppr超能文献

皮质区局部轴突连接的发育起源:一个计算模型。

Developmental origin of patchy axonal connectivity in the neocortex: a computational model.

机构信息

Institute of Neuroinformatics, University of Zürich and Swiss Federal Institute of Technology Zürich.

出版信息

Cereb Cortex. 2014 Feb;24(2):487-500. doi: 10.1093/cercor/bhs327. Epub 2012 Nov 6.

Abstract

Injections of neural tracers into many mammalian neocortical areas reveal a common patchy motif of clustered axonal projections. We studied in simulation a mathematical model for neuronal development in order to investigate how this patchy connectivity could arise in layer II/III of the neocortex. In our model, individual neurons of this layer expressed the activator-inhibitor components of a Gierer-Meinhardt reaction-diffusion system. The resultant steady-state reaction-diffusion pattern across the neuronal population was approximately hexagonal. Growth cones at the tips of extending axons used the various morphogens secreted by intrapatch neurons as guidance cues to direct their growth and invoke axonal arborization, so yielding a patchy distribution of arborization across the entire layer II/III. We found that adjustment of a single parameter yields the intriguing linear relationship between average patch diameter and interpatch spacing that has been observed experimentally over many cortical areas and species. We conclude that a simple Gierer-Meinhardt system expressed by the neurons of the developing neocortex is sufficient to explain the patterns of clustered connectivity observed experimentally.

摘要

将神经示踪剂注入许多哺乳动物新皮质区域揭示了簇状轴突投射的常见块状图案。我们通过模拟研究了神经元发育的数学模型,以研究这种块状连接如何在新皮质的 II/III 层中出现。在我们的模型中,该层的单个神经元表达了 Gierer-Meinhardt 反应扩散系统的激活剂-抑制剂成分。整个神经元群体的稳态反应扩散模式大致呈六边形。延伸轴突末端的生长锥将斑块内神经元分泌的各种形态发生素用作导向线索来引导其生长并引发轴突分支,从而在整个 II/III 层中产生分支的块状分布。我们发现,单个参数的调整产生了令人着迷的平均斑块直径和斑块间间隔之间的线性关系,这种关系在许多皮质区域和物种中都有实验观察到。我们得出结论,发育中的新皮质神经元表达的简单 Gierer-Meinhardt 系统足以解释实验中观察到的聚类连接模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57d5/3888370/da68e5e02b9b/bhs32701.jpg

相似文献

1
Developmental origin of patchy axonal connectivity in the neocortex: a computational model.
Cereb Cortex. 2014 Feb;24(2):487-500. doi: 10.1093/cercor/bhs327. Epub 2012 Nov 6.
2
From neural arbors to daisies.
Cereb Cortex. 2011 May;21(5):1118-33. doi: 10.1093/cercor/bhq184. Epub 2010 Sep 30.
7
Diverse modes of axon elaboration in the developing neocortex.
PLoS Biol. 2005 Aug;3(8):e272. doi: 10.1371/journal.pbio.0030272. Epub 2005 Jul 26.
8
A Translaminar Genetic Logic for the Circuit Identity of Intracortically Projecting Neurons.
Curr Biol. 2019 Jan 21;29(2):332-339.e5. doi: 10.1016/j.cub.2018.11.071. Epub 2019 Jan 10.
9
Neuronal circuits of the neocortex.
Annu Rev Neurosci. 2004;27:419-51. doi: 10.1146/annurev.neuro.27.070203.144152.
10
Computational models of neocortical neuronogenesis and programmed cell death in the developing mouse, monkey, and human.
Cereb Cortex. 2007 Oct;17(10):2433-42. doi: 10.1093/cercor/bhl151. Epub 2007 Jan 4.

引用本文的文献

1
Calibration of stochastic, agent-based neuron growth models with approximate Bayesian computation.
J Math Biol. 2024 Oct 8;89(5):50. doi: 10.1007/s00285-024-02144-2.
2
Retinal waves in adaptive rewiring networks orchestrate convergence and divergence in the visual system.
Netw Neurosci. 2024 Oct 1;8(3):653-672. doi: 10.1162/netn_a_00370. eCollection 2024.
3
Preparation of surgical meshes using self-regulating technology based on reaction-diffusion processes.
Med Biol Eng Comput. 2024 Nov;62(11):3343-3354. doi: 10.1007/s11517-024-03141-9. Epub 2024 Jun 5.
5
Modular Organization of Signal Transmission in Primate Somatosensory Cortex.
Front Neuroanat. 2022 Jul 8;16:915238. doi: 10.3389/fnana.2022.915238. eCollection 2022.
6
Creative Destruction: A Basic Computational Model of Cortical Layer Formation.
Cereb Cortex. 2021 Jun 10;31(7):3237-3253. doi: 10.1093/cercor/bhab003.
7
A generative growth model for thalamocortical axonal branching in primary visual cortex.
PLoS Comput Biol. 2020 Feb 13;16(2):e1007315. doi: 10.1371/journal.pcbi.1007315. eCollection 2020 Feb.
9
Multi-phasic bi-directional chemotactic responses of the growth cone.
Sci Rep. 2016 Nov 3;6:36256. doi: 10.1038/srep36256.

本文引用的文献

1
Forging patterns and making waves from biology to geology: a commentary on Turing (1952) 'The chemical basis of morphogenesis'.
Philos Trans R Soc Lond B Biol Sci. 2015 Apr 19;370(1666). doi: 10.1098/rstb.2014.0218.
2
A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus.
Nature. 1995 Aug 31;376(6543):765-8. doi: 10.1038/376765a0.
3
Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system.
Science. 2012 May 11;336(6082):721-4. doi: 10.1126/science.1221920. Epub 2012 Apr 12.
5
An instruction language for self-construction in the context of neural networks.
Front Comput Neurosci. 2011 Dec 8;5:57. doi: 10.3389/fncom.2011.00057. eCollection 2011.
6
A reaction-diffusion model to capture disparity selectivity in primary visual cortex.
PLoS One. 2011;6(10):e24997. doi: 10.1371/journal.pone.0024997. Epub 2011 Oct 13.
7
Class 5 transmembrane semaphorins control selective Mammalian retinal lamination and function.
Neuron. 2011 Aug 11;71(3):460-73. doi: 10.1016/j.neuron.2011.06.009.
8
A model of cerebral cortex formation during fetal development using reaction-diffusion-convection equations with Turing space parameters.
Comput Methods Programs Biomed. 2011 Dec;104(3):489-97. doi: 10.1016/j.cmpb.2011.07.001. Epub 2011 Jul 23.
9
Self-organizing and stochastic behaviors during the regeneration of hair stem cells.
Science. 2011 Apr 29;332(6029):586-9. doi: 10.1126/science.1201647.
10
Embedding of cortical representations by the superficial patch system.
Cereb Cortex. 2011 Oct;21(10):2244-60. doi: 10.1093/cercor/bhq290. Epub 2011 Mar 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验