文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于纳米颗粒的光动力疗法中光细胞毒性的实时监测:基于模型的方法。

Real-time monitoring of photocytotoxicity in nanoparticles-based photodynamic therapy: a model-based approach.

机构信息

Université de Lorraine, Centre de Recherche en Automatique de Nancy (CRAN), UMR 7039, Vandœuvre-lès-Nancy, France.

出版信息

PLoS One. 2012;7(11):e48617. doi: 10.1371/journal.pone.0048617. Epub 2012 Nov 7.


DOI:10.1371/journal.pone.0048617
PMID:23144911
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3492457/
Abstract

Nanoparticles are widely suggested as targeted drug-delivery systems. In photodynamic therapy (PDT), the use of multifunctional nanoparticles as photoactivatable drug carriers is a promising approach for improving treatment efficiency and selectivity. However, the conventional cytotoxicity assays are not well adapted to characterize nanoparticles cytotoxic effects and to discriminate early and late cell responses. In this work, we evaluated a real-time label-free cell analysis system as a tool to investigate in vitro cyto- and photocyto-toxicity of nanoparticles-based photosensitizers compared with classical metabolic assays. To do so, we introduced a dynamic approach based on real-time cell impedance monitoring and a mathematical model-based analysis to characterize the measured dynamic cell response. Analysis of real-time cell responses requires indeed new modeling approaches able to describe suited use of dynamic models. In a first step, a multivariate analysis of variance associated with a canonical analysis of the obtained normalized cell index (NCI) values allowed us to identify different relevant time periods following nanoparticles exposure. After light irradiation, we evidenced discriminant profiles of cell index (CI) kinetics in a concentration- and light dose-dependent manner. In a second step, we proposed a full factorial design of experiments associated with a mixed effect kinetic model of the CI time responses. The estimated model parameters led to a new characterization of the dynamic cell responses such as the magnitude and the time constant of the transient phase in response to the photo-induced dynamic effects. These parameters allowed us to characterize totally the in vitro photodynamic response according to nanoparticle-grafted photosensitizer concentration and light dose. They also let us estimate the strength of the synergic photodynamic effect. This dynamic approach based on statistical modeling furnishes new insights for in vitro characterization of nanoparticles-mediated effects on cell proliferation with or without light irradiation.

摘要

纳米粒子被广泛认为是靶向药物输送系统。在光动力疗法(PDT)中,使用多功能纳米粒子作为光激活药物载体是提高治疗效率和选择性的一种有前途的方法。然而,传统的细胞毒性测定方法并不适合于表征纳米粒子的细胞毒性作用,也不能区分早期和晚期的细胞反应。在这项工作中,我们评估了一种实时无标记细胞分析系统,作为一种工具,用于研究基于纳米粒子的光敏剂的体外细胞毒性和光细胞毒性,与经典的代谢测定方法相比。为此,我们引入了一种基于实时细胞阻抗监测和基于数学模型分析的动态方法,以表征测量的动态细胞反应。实时细胞反应的分析确实需要新的建模方法,这些方法能够描述动态模型的合适使用。在第一步中,我们对获得的归一化细胞指数(NCI)值进行了多元方差分析和典型分析,这使我们能够识别出纳米粒子暴露后不同的相关时间段。在光照后,我们以浓度和光剂量依赖的方式,证明了细胞指数(CI)动力学的判别谱。在第二步中,我们提出了一个与 CI 时间响应的混合效应动力学模型相关的完全析因实验设计。所估计的模型参数导致了对动态细胞反应的新的特征描述,例如对光诱导的动态效应的瞬态相的幅度和时间常数。这些参数使我们能够根据纳米粒子接枝光敏剂的浓度和光剂量来完全表征体外光动力反应。它们还让我们估计协同光动力效应的强度。这种基于统计建模的动态方法为研究有无光照的情况下,纳米粒子对细胞增殖的介导作用的体外特性提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/88ba1a6e188f/pone.0048617.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/86bc2a679bfe/pone.0048617.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/83d45609fd63/pone.0048617.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/4e1e144bd18e/pone.0048617.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/a9a700fed902/pone.0048617.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/a70ab182b87e/pone.0048617.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/8c7f0b05b17c/pone.0048617.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/feb4708736e4/pone.0048617.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/ef08b1920bda/pone.0048617.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/9694d7fe1d2c/pone.0048617.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/e92dca54f4a8/pone.0048617.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/88ba1a6e188f/pone.0048617.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/86bc2a679bfe/pone.0048617.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/83d45609fd63/pone.0048617.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/4e1e144bd18e/pone.0048617.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/a9a700fed902/pone.0048617.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/a70ab182b87e/pone.0048617.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/8c7f0b05b17c/pone.0048617.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/feb4708736e4/pone.0048617.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/ef08b1920bda/pone.0048617.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/9694d7fe1d2c/pone.0048617.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/e92dca54f4a8/pone.0048617.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa02/3492457/88ba1a6e188f/pone.0048617.g011.jpg

相似文献

[1]
Real-time monitoring of photocytotoxicity in nanoparticles-based photodynamic therapy: a model-based approach.

PLoS One. 2012-11-7

[2]
Folate-mediated and pH-responsive chidamide-bound micelles encapsulating photosensitizers for tumor-targeting photodynamic therapy.

Int J Nanomedicine. 2019-7-22

[3]
Synergistic chemo-photodynamic therapy mediated by light-activated ROS-degradable nanocarriers.

J Mater Chem B. 2018-12-19

[4]
Photodynamic efficacy of photosensitizers under an attenuated light dose via lipid nano-carrier-mediated nuclear targeting.

Biomaterials. 2012-5-3

[5]
Photo-responsive hollow silica nanoparticles for light-triggered genetic and photodynamic synergistic therapy.

Acta Biomater. 2018-7-4

[6]
Selective Photodynamic Effects on Breast Cancer Cells Provided by p123 Pluronic®- Based Nanoparticles Modulating Hypericin Delivery.

Anticancer Agents Med Chem. 2020

[7]
Self-Delivered and Self-Monitored Chemo-Photodynamic Nanoparticles with Light-Triggered Synergistic Antitumor Therapies by Downregulation of HIF-1α and Depletion of GSH.

ACS Appl Mater Interfaces. 2020-1-24

[8]
Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.

J Photochem Photobiol B. 2017-5-22

[9]
Beta-carotene-bound albumin nanoparticles modified with chlorin e6 for breast tumor ablation based on photodynamic therapy.

Colloids Surf B Biointerfaces. 2018-7-10

[10]
Comparative study of X-ray treatment and photodynamic therapy by using 5-aminolevulinic acid conjugated gold nanoparticles in a melanoma cell line.

Artif Cells Nanomed Biotechnol. 2017-5

引用本文的文献

[1]
Antibacterial and thermomechanical properties of experimental dental resins containing quaternary ammonium monomers with two or four methacrylate groups.

RSC Adv. 2019-12-9

[2]
Preparation of a highly crosslinked biosafe dental nanocomposite resin with a tetrafunctional methacrylate quaternary ammonium salt monomer.

RSC Adv. 2019-12-16

[3]
iCELLigence real-time cell analysis system for examining the cytotoxicity of drugs to cancer cell lines.

Exp Ther Med. 2017-9

[4]
Novel ZnO:Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells.

Beilstein J Nanotechnol. 2015-2-26

[5]
Suitability of cell-based label-free detection for cytotoxicity screening of carbon nanotubes.

Biomed Res Int. 2013

本文引用的文献

[1]
Multifunctional Peptide-conjugated hybrid silica nanoparticles for photodynamic therapy and MRI.

Theranostics. 2012-9-29

[2]
A computational modeling and analysis in cell biological dynamics using electric cell-substrate impedance sensing (ECIS).

Biosens Bioelectron. 2012-1-3

[3]
Non polymeric nanoparticles for photodynamic therapy applications: recent developments.

Curr Med Chem. 2012

[4]
Mechanistic modeling of the effects of myoferlin on tumor cell invasion.

Proc Natl Acad Sci U S A. 2011-11-30

[5]
Ultrasmall rigid particles as multimodal probes for medical applications.

Angew Chem Int Ed Engl. 2011-12-16

[6]
In vivo targeted delivery of nanoparticles for theranosis.

Acc Chem Res. 2011-8-18

[7]
Functionalized silica-based nanoparticles for photodynamic therapy.

Nanomedicine (Lond). 2011-7-4

[8]
Evaluation of cell cycle arrest in estrogen responsive MCF-7 breast cancer cells: pitfalls of the MTS assay.

PLoS One. 2011-6-3

[9]
Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy.

Acc Chem Res. 2011-6-10

[10]
Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer.

Biomaterials. 2011-4-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索