Moeller James R, Habeck Christian G
New York State Psychiatric Institute, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA ; Cognitive Neuroscience Division, Taub Institute, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA ; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
Int J Biomed Imaging. 2006;2006:79862. doi: 10.1155/IJBI/2006/79862. Epub 2006 Dec 6.
In brain mapping studies of sensory, cognitive, and motor operations, specific waveforms of dynamic neural activity are predicted based on theoretical models of human information processing. For example in event-related functional MRI (fMRI), the general linear model (GLM) is employed in mass-univariate analyses to identify the regions whose dynamic activity closely matches the expected waveforms. By comparison multivariate analyses based on PCA or ICA provide greater flexibility in detecting spatiotemporal properties of experimental data that may strongly support alternative neuroscientific explanations. We investigated conjoint multivariate and mass-univariate analyses that combine the capabilities to (1) verify activation of neural machinery we already understand and (2) discover reliable signatures of new neural machinery. We examined combinations of GLM and PCA that recover latent neural signals (waveforms and footprints) with greater accuracy than either method alone. Comparative results are illustrated with analyses of real fMRI data, adding to Monte Carlo simulation support.
在对感觉、认知和运动操作的脑图谱研究中,基于人类信息处理的理论模型预测动态神经活动的特定波形。例如,在事件相关功能磁共振成像(fMRI)中,一般线性模型(GLM)用于大规模单变量分析,以识别其动态活动与预期波形紧密匹配的区域。相比之下,基于主成分分析(PCA)或独立成分分析(ICA)的多变量分析在检测实验数据的时空特性方面提供了更大的灵活性,这些特性可能有力地支持其他神经科学解释。我们研究了联合多变量和大规模单变量分析,其结合了以下能力:(1)验证我们已经了解的神经机制的激活情况,以及(2)发现新神经机制的可靠特征。我们研究了GLM和PCA的组合,其恢复潜在神经信号(波形和足迹)的准确性高于单独使用任何一种方法。通过对实际fMRI数据的分析说明了比较结果,并增加了蒙特卡罗模拟支持。