Suppr超能文献

脑图谱中大规模单变量和多变量建模的互惠益处:在事件相关功能磁共振成像、H(2) (15)O-和氟代脱氧葡萄糖正电子发射断层扫描中的应用

Reciprocal Benefits of Mass-Univariate and Multivariate Modeling in Brain Mapping: Applications to Event-Related Functional MRI, H(2) (15)O-, and FDG-PET.

作者信息

Moeller James R, Habeck Christian G

机构信息

New York State Psychiatric Institute, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA ; Cognitive Neuroscience Division, Taub Institute, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA ; Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.

出版信息

Int J Biomed Imaging. 2006;2006:79862. doi: 10.1155/IJBI/2006/79862. Epub 2006 Dec 6.

Abstract

In brain mapping studies of sensory, cognitive, and motor operations, specific waveforms of dynamic neural activity are predicted based on theoretical models of human information processing. For example in event-related functional MRI (fMRI), the general linear model (GLM) is employed in mass-univariate analyses to identify the regions whose dynamic activity closely matches the expected waveforms. By comparison multivariate analyses based on PCA or ICA provide greater flexibility in detecting spatiotemporal properties of experimental data that may strongly support alternative neuroscientific explanations. We investigated conjoint multivariate and mass-univariate analyses that combine the capabilities to (1) verify activation of neural machinery we already understand and (2) discover reliable signatures of new neural machinery. We examined combinations of GLM and PCA that recover latent neural signals (waveforms and footprints) with greater accuracy than either method alone. Comparative results are illustrated with analyses of real fMRI data, adding to Monte Carlo simulation support.

摘要

在对感觉、认知和运动操作的脑图谱研究中,基于人类信息处理的理论模型预测动态神经活动的特定波形。例如,在事件相关功能磁共振成像(fMRI)中,一般线性模型(GLM)用于大规模单变量分析,以识别其动态活动与预期波形紧密匹配的区域。相比之下,基于主成分分析(PCA)或独立成分分析(ICA)的多变量分析在检测实验数据的时空特性方面提供了更大的灵活性,这些特性可能有力地支持其他神经科学解释。我们研究了联合多变量和大规模单变量分析,其结合了以下能力:(1)验证我们已经了解的神经机制的激活情况,以及(2)发现新神经机制的可靠特征。我们研究了GLM和PCA的组合,其恢复潜在神经信号(波形和足迹)的准确性高于单独使用任何一种方法。通过对实际fMRI数据的分析说明了比较结果,并增加了蒙特卡罗模拟支持。

相似文献

3
Mapping of the neuronal networks of human cortical brain functions.
Adv Tech Stand Neurosurg. 2003;28:91-142. doi: 10.1007/978-3-7091-0641-9_2.
5
Analysis of continuous infusion functional PET (fPET) in the human brain.
Neuroimage. 2020 Jun;213:116720. doi: 10.1016/j.neuroimage.2020.116720. Epub 2020 Mar 8.
6
Model-free analysis of brain fMRI data by recurrence quantification.
Neuroimage. 2007 Aug 15;37(2):489-503. doi: 10.1016/j.neuroimage.2007.05.025. Epub 2007 May 25.
7
Modeling motor task activation from resting-state fMRI using machine learning in individual subjects.
Brain Imaging Behav. 2021 Feb;15(1):122-132. doi: 10.1007/s11682-019-00239-9.
9
Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA.
Magn Reson Imaging. 2009 Feb;27(2):264-78. doi: 10.1016/j.mri.2008.05.021. Epub 2008 Oct 11.

引用本文的文献

1
Multivariate pattern analysis of medical imaging-based Alzheimer's disease.
Front Med (Lausanne). 2024 Jul 19;11:1412592. doi: 10.3389/fmed.2024.1412592. eCollection 2024.
2
Using diffusion tensor imaging to effectively target TMS to deep brain structures.
Neuroimage. 2022 Apr 1;249:118863. doi: 10.1016/j.neuroimage.2021.118863. Epub 2021 Dec 30.
5
The relation between statistical power and inference in fMRI.
PLoS One. 2017 Nov 20;12(11):e0184923. doi: 10.1371/journal.pone.0184923. eCollection 2017.
6
On tests of activation map dimensionality for fMRI-based studies of learning.
Front Neurosci. 2015 Apr 14;9:85. doi: 10.3389/fnins.2015.00085. eCollection 2015.
7
The power of neuroimaging biomarkers for screening frontotemporal dementia.
Hum Brain Mapp. 2014 Sep;35(9):4827-40. doi: 10.1002/hbm.22515. Epub 2014 Mar 31.
8
Metabolic network as a progression biomarker of premanifest Huntington's disease.
J Clin Invest. 2013 Sep;123(9):4076-88. doi: 10.1172/JCI69411. Epub 2013 Aug 29.
10
Parkinson's disease: increased motor network activity in the absence of movement.
J Neurosci. 2013 Mar 6;33(10):4540-9. doi: 10.1523/JNEUROSCI.5024-12.2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验