Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
PLoS Comput Biol. 2012;8(11):e1002768. doi: 10.1371/journal.pcbi.1002768. Epub 2012 Nov 15.
The accurate identification of the route of transmission taken by an infectious agent through a host population is critical to understanding its epidemiology and informing measures for its control. However, reconstruction of transmission routes during an epidemic is often an underdetermined problem: data about the location and timings of infections can be incomplete, inaccurate, and compatible with a large number of different transmission scenarios. For fast-evolving pathogens like RNA viruses, inference can be strengthened by using genetic data, nowadays easily and affordably generated. However, significant statistical challenges remain to be overcome in the full integration of these different data types if transmission trees are to be reliably estimated. We present here a framework leading to a bayesian inference scheme that combines genetic and epidemiological data, able to reconstruct most likely transmission patterns and infection dates. After testing our approach with simulated data, we apply the method to two UK epidemics of Foot-and-Mouth Disease Virus (FMDV): the 2007 outbreak, and a subset of the large 2001 epidemic. In the first case, we are able to confirm the role of a specific premise as the link between the two phases of the epidemics, while transmissions more densely clustered in space and time remain harder to resolve. When we consider data collected from the 2001 epidemic during a time of national emergency, our inference scheme robustly infers transmission chains, and uncovers the presence of undetected premises, thus providing a useful tool for epidemiological studies in real time. The generation of genetic data is becoming routine in epidemiological investigations, but the development of analytical tools maximizing the value of these data remains a priority. Our method, while applied here in the context of FMDV, is general and with slight modification can be used in any situation where both spatiotemporal and genetic data are available.
准确识别传染病在宿主群体中的传播途径对于理解其流行病学并为其控制措施提供信息至关重要。然而,在疫情期间重建传播途径通常是一个欠定问题:有关感染地点和时间的数据可能不完整、不准确,并且与许多不同的传播场景兼容。对于像 RNA 病毒这样快速进化的病原体,可以通过使用遗传数据来加强推断,如今遗传数据很容易且负担得起。然而,如果要可靠地估计传播树,则仍然需要克服充分整合这些不同数据类型的重大统计挑战。我们在这里提出了一个框架,导致贝叶斯推断方案,该方案结合了遗传和流行病学数据,能够重建最可能的传播模式和感染日期。在用模拟数据测试我们的方法之后,我们将该方法应用于英国口蹄疫病毒(FMDV)的两次流行:2007 年爆发和 2001 年大流行的一个子集。在第一种情况下,我们能够确认一个特定前提作为两次流行之间联系的作用,而在空间和时间上更密集地传播的传播仍然更难解决。当我们考虑在国家紧急情况下从 2001 年大流行中收集的数据时,我们的推断方案能够可靠地推断出传播链,并揭示出未检测到的前提的存在,从而为实时流行病学研究提供了有用的工具。遗传数据的生成在流行病学调查中变得常规化,但最大限度地利用这些数据的分析工具的开发仍然是一个优先事项。我们的方法虽然在这里应用于 FMDV 的背景下,但它是通用的,只需稍加修改即可用于任何有空间和遗传数据可用的情况。