Suppr超能文献

一种使用流行病学和遗传数据重建传播树的贝叶斯推断框架。

A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data.

机构信息

Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.

出版信息

PLoS Comput Biol. 2012;8(11):e1002768. doi: 10.1371/journal.pcbi.1002768. Epub 2012 Nov 15.

Abstract

The accurate identification of the route of transmission taken by an infectious agent through a host population is critical to understanding its epidemiology and informing measures for its control. However, reconstruction of transmission routes during an epidemic is often an underdetermined problem: data about the location and timings of infections can be incomplete, inaccurate, and compatible with a large number of different transmission scenarios. For fast-evolving pathogens like RNA viruses, inference can be strengthened by using genetic data, nowadays easily and affordably generated. However, significant statistical challenges remain to be overcome in the full integration of these different data types if transmission trees are to be reliably estimated. We present here a framework leading to a bayesian inference scheme that combines genetic and epidemiological data, able to reconstruct most likely transmission patterns and infection dates. After testing our approach with simulated data, we apply the method to two UK epidemics of Foot-and-Mouth Disease Virus (FMDV): the 2007 outbreak, and a subset of the large 2001 epidemic. In the first case, we are able to confirm the role of a specific premise as the link between the two phases of the epidemics, while transmissions more densely clustered in space and time remain harder to resolve. When we consider data collected from the 2001 epidemic during a time of national emergency, our inference scheme robustly infers transmission chains, and uncovers the presence of undetected premises, thus providing a useful tool for epidemiological studies in real time. The generation of genetic data is becoming routine in epidemiological investigations, but the development of analytical tools maximizing the value of these data remains a priority. Our method, while applied here in the context of FMDV, is general and with slight modification can be used in any situation where both spatiotemporal and genetic data are available.

摘要

准确识别传染病在宿主群体中的传播途径对于理解其流行病学并为其控制措施提供信息至关重要。然而,在疫情期间重建传播途径通常是一个欠定问题:有关感染地点和时间的数据可能不完整、不准确,并且与许多不同的传播场景兼容。对于像 RNA 病毒这样快速进化的病原体,可以通过使用遗传数据来加强推断,如今遗传数据很容易且负担得起。然而,如果要可靠地估计传播树,则仍然需要克服充分整合这些不同数据类型的重大统计挑战。我们在这里提出了一个框架,导致贝叶斯推断方案,该方案结合了遗传和流行病学数据,能够重建最可能的传播模式和感染日期。在用模拟数据测试我们的方法之后,我们将该方法应用于英国口蹄疫病毒(FMDV)的两次流行:2007 年爆发和 2001 年大流行的一个子集。在第一种情况下,我们能够确认一个特定前提作为两次流行之间联系的作用,而在空间和时间上更密集地传播的传播仍然更难解决。当我们考虑在国家紧急情况下从 2001 年大流行中收集的数据时,我们的推断方案能够可靠地推断出传播链,并揭示出未检测到的前提的存在,从而为实时流行病学研究提供了有用的工具。遗传数据的生成在流行病学调查中变得常规化,但最大限度地利用这些数据的分析工具的开发仍然是一个优先事项。我们的方法虽然在这里应用于 FMDV 的背景下,但它是通用的,只需稍加修改即可用于任何有空间和遗传数据可用的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/236d/3499255/dbd961b90d1d/pcbi.1002768.g001.jpg

相似文献

1
A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data.
PLoS Comput Biol. 2012;8(11):e1002768. doi: 10.1371/journal.pcbi.1002768. Epub 2012 Nov 15.
2
A Systematic Bayesian Integration of Epidemiological and Genetic Data.
PLoS Comput Biol. 2015 Nov 23;11(11):e1004633. doi: 10.1371/journal.pcbi.1004633. eCollection 2015 Nov.
3
The impact of within-herd genetic variation upon inferred transmission trees for foot-and-mouth disease virus.
Infect Genet Evol. 2015 Jun;32:440-8. doi: 10.1016/j.meegid.2015.03.032. Epub 2015 Apr 8.
5
Molecular Infectious Disease Epidemiology: Survival Analysis and Algorithms Linking Phylogenies to Transmission Trees.
PLoS Comput Biol. 2016 Apr 12;12(4):e1004869. doi: 10.1371/journal.pcbi.1004869. eCollection 2016 Apr.
6
Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data.
PLoS Comput Biol. 2019 Mar 29;15(3):e1006930. doi: 10.1371/journal.pcbi.1006930. eCollection 2019 Mar.
8
Epidemic Reconstruction in a Phylogenetics Framework: Transmission Trees as Partitions of the Node Set.
PLoS Comput Biol. 2015 Dec 30;11(12):e1004613. doi: 10.1371/journal.pcbi.1004613. eCollection 2015 Dec.
9
Predicting undetected infections during the 2007 foot-and-mouth disease outbreak.
J R Soc Interface. 2009 Dec 6;6(41):1145-51. doi: 10.1098/rsif.2008.0433. Epub 2008 Dec 16.
10
Bayesian analysis of experimental epidemics of foot-and-mouth disease.
Proc Biol Sci. 2004 Jun 7;271(1544):1111-7. doi: 10.1098/rspb.2004.2715.

引用本文的文献

2
ScITree: Scalable Bayesian inference of transmission tree from epidemiological and genomic data.
PLoS Comput Biol. 2025 Jun 10;21(6):e1012657. doi: 10.1371/journal.pcbi.1012657. eCollection 2025 Jun.
4
A Bayesian inference method to estimate transmission trees with multiple introductions; applied to SARS-CoV-2 in Dutch mink farms.
PLoS Comput Biol. 2023 Nov 27;19(11):e1010928. doi: 10.1371/journal.pcbi.1010928. eCollection 2023 Nov.
5
Molecular source attribution.
PLoS Comput Biol. 2022 Nov 17;18(11):e1010649. doi: 10.1371/journal.pcbi.1010649. eCollection 2022 Nov.
6
Characterizing viral within-host diversity in fast and non-equilibrium demo-genetic dynamics.
Front Microbiol. 2022 Oct 5;13:983938. doi: 10.3389/fmicb.2022.983938. eCollection 2022.
9
Finding disease outbreak locations from human mobility data.
EPJ Data Sci. 2021;10(1):52. doi: 10.1140/epjds/s13688-021-00306-6. Epub 2021 Oct 19.
10
Sample size calculation for phylogenetic case linkage.
PLoS Comput Biol. 2021 Jul 6;17(7):e1009182. doi: 10.1371/journal.pcbi.1009182. eCollection 2021 Jul.

本文引用的文献

1
Methods to infer transmission risk factors in complex outbreak data.
J R Soc Interface. 2012 Mar 7;9(68):456-69. doi: 10.1098/rsif.2011.0379. Epub 2011 Aug 10.
2
Unravelling transmission trees of infectious diseases by combining genetic and epidemiological data.
Proc Biol Sci. 2012 Feb 7;279(1728):444-50. doi: 10.1098/rspb.2011.0913. Epub 2011 Jul 6.
4
Epidemiological inference for partially observed epidemics: the example of the 2001 foot and mouth epidemic in Great Britain.
Epidemics. 2009 Mar;1(1):21-34. doi: 10.1016/j.epidem.2008.09.001. Epub 2008 Nov 17.
6
A Bayesian phylogenetic method to estimate unknown sequence ages.
Mol Biol Evol. 2011 Feb;28(2):879-87. doi: 10.1093/molbev/msq262. Epub 2010 Oct 1.
7
Reconstructing disease outbreaks from genetic data: a graph approach.
Heredity (Edinb). 2011 Feb;106(2):383-90. doi: 10.1038/hdy.2010.78. Epub 2010 Jun 16.
8
Sequencing technologies - the next generation.
Nat Rev Genet. 2010 Jan;11(1):31-46. doi: 10.1038/nrg2626. Epub 2009 Dec 8.
9
Bayesian phylogeography finds its roots.
PLoS Comput Biol. 2009 Sep;5(9):e1000520. doi: 10.1371/journal.pcbi.1000520. Epub 2009 Sep 25.
10
Transmission pathways of foot-and-mouth disease virus in the United Kingdom in 2007.
PLoS Pathog. 2008 Apr 18;4(4):e1000050. doi: 10.1371/journal.ppat.1000050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验