Suppr超能文献

重建口蹄疫疫情:传播网络模型的方法比较。

Reconstructing foot-and-mouth disease outbreaks: a methods comparison of transmission network models.

机构信息

Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.

Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture Research Organization, Tsukuba, Ibaraki, 305-0856, Japan.

出版信息

Sci Rep. 2019 Mar 18;9(1):4809. doi: 10.1038/s41598-019-41103-6.

Abstract

A number of transmission network models are available that combine genomic and epidemiological data to reconstruct networks of who infected whom during infectious disease outbreaks. For such models to reliably inform decision-making they must be transparently validated, robust, and capable of producing accurate predictions within the short data collection and inference timeframes typical of outbreak responses. A lack of transparent multi-model comparisons reduces confidence in the accuracy of transmission network model outputs, negatively impacting on their more widespread use as decision-support tools. We undertook a formal comparison of the performance of nine published transmission network models based on a set of foot-and-mouth disease outbreaks simulated in a previously free country, with corresponding simulated phylogenies and genomic samples from animals on infected premises. Of the transmission network models tested, Lau's systematic Bayesian integration framework was found to be the most accurate for inferring the transmission network and timing of exposures, correctly identifying the source of 73% of the infected premises (with 91% accuracy for sources with model support >0.80). The Structured COalescent Transmission Tree Inference provided the most accurate inference of molecular clock rates. This validation study points to which models might be reliably used to reconstruct similar future outbreaks and how to interpret the outputs to inform control. Further research could involve extending the best-performing models to explicitly represent within-host diversity so they can handle next-generation sequencing data, incorporating additional animal and farm-level covariates and combining predictions using Ensemble methods and other approaches.

摘要

有许多传输网络模型可将基因组和流行病学数据结合起来,以重建传染病暴发期间谁感染了谁的网络。为了使这些模型能够可靠地为决策提供信息,它们必须经过透明验证,具有稳健性,并能够在暴发应对中典型的短期数据收集和推断时间内生成准确的预测。缺乏透明的多模型比较会降低对传输网络模型输出准确性的信心,从而对其更广泛地用作决策支持工具产生负面影响。我们根据以前无疾病的国家中模拟的一组口蹄疫暴发,对九种已发表的传输网络模型的性能进行了正式比较,这些模型具有相应的模拟系统发育和感染场所动物的基因组样本。在测试的传输网络模型中,发现 Lau 的系统贝叶斯综合框架在推断传播网络和暴露时间方面最为准确,正确识别了 73%的感染场所的来源(来源的准确率为 91%,模型支持度> 0.80)。结构化合并传输树推断提供了对分子钟率的最准确推断。这项验证研究指出了哪些模型可以可靠地用于重建类似的未来暴发,以及如何解释输出信息以进行控制。进一步的研究可以涉及扩展表现最佳的模型,以明确表示宿主内的多样性,以便它们可以处理下一代测序数据,同时纳入其他动物和农场级别的协变量,并使用集成方法和其他方法组合预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83bf/6423326/bd59a968eefe/41598_2019_41103_Fig1_HTML.jpg

相似文献

2
Transmission network reconstruction for foot-and-mouth disease outbreaks incorporating farm-level covariates.
PLoS One. 2020 Jul 15;15(7):e0235660. doi: 10.1371/journal.pone.0235660. eCollection 2020.
4
A Bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data.
PLoS Comput Biol. 2012;8(11):e1002768. doi: 10.1371/journal.pcbi.1002768. Epub 2012 Nov 15.
5
Options for managing animal welfare on intensive pig farms confined by movement restrictions during an outbreak of foot and mouth disease.
Prev Vet Med. 2014 Dec 1;117(3-4):533-41. doi: 10.1016/j.prevetmed.2014.10.002. Epub 2014 Oct 12.
6
A Systematic Bayesian Integration of Epidemiological and Genetic Data.
PLoS Comput Biol. 2015 Nov 23;11(11):e1004633. doi: 10.1371/journal.pcbi.1004633. eCollection 2015 Nov.
7
Ensemble modelling and structured decision-making to support Emergency Disease Management.
Prev Vet Med. 2017 Mar 1;138:124-133. doi: 10.1016/j.prevetmed.2017.01.003. Epub 2017 Jan 16.
8
How do resources influence control measures during a simulated outbreak of foot and mouth disease in Australia?
Prev Vet Med. 2014 Mar 1;113(4):436-46. doi: 10.1016/j.prevetmed.2013.12.003. Epub 2013 Dec 21.
10
A comparison of predictions made by three simulation models of foot-and-mouth disease.
N Z Vet J. 2007 Dec;55(6):280-8. doi: 10.1080/00480169.2007.36782.

引用本文的文献

1
ScITree: Scalable Bayesian inference of transmission tree from epidemiological and genomic data.
PLoS Comput Biol. 2025 Jun 10;21(6):e1012657. doi: 10.1371/journal.pcbi.1012657. eCollection 2025 Jun.
3
JUNIPER: Reconstructing Transmission Events from Next-Generation Sequencing Data at Scale.
Res Sq. 2025 Mar 27:rs.3.rs-6264999. doi: 10.21203/rs.3.rs-6264999/v1.
4
JUNIPER: Reconstructing Transmission Events from Next-Generation Sequencing Data at Scale.
medRxiv. 2025 Mar 5:2025.03.02.25323192. doi: 10.1101/2025.03.02.25323192.
5
A systematic review of epidemiological modelling in response to lumpy skin disease outbreaks.
Front Vet Sci. 2024 Sep 23;11:1459293. doi: 10.3389/fvets.2024.1459293. eCollection 2024.
6
Unveiling invisible farm-to-farm PRRSV-2 transmission links and routes through transmission tree and network analysis.
Evol Appl. 2023 Sep 15;16(10):1721-1734. doi: 10.1111/eva.13596. eCollection 2023 Oct.
7
Inferring Viral Transmission Pathways from Within-Host Variation.
medRxiv. 2023 Oct 15:2023.10.14.23297039. doi: 10.1101/2023.10.14.23297039.
8
Comparing transmission reconstruction models from whole genome sequence data.
Epidemiol Infect. 2023 Jun 9;151:e105. doi: 10.1017/S0950268823000900.
10
Increased transmission of SARS-CoV-2 in Denmark during UEFA European championships.
Epidemiol Infect. 2022 Mar 23;150:e123. doi: 10.1017/S095026882200019X.

本文引用的文献

1
outbreaker2: a modular platform for outbreak reconstruction.
BMC Bioinformatics. 2018 Oct 22;19(Suppl 11):363. doi: 10.1186/s12859-018-2330-z.
2
Simultaneous inference of phylogenetic and transmission trees in infectious disease outbreaks.
PLoS Comput Biol. 2017 May 18;13(5):e1005495. doi: 10.1371/journal.pcbi.1005495. eCollection 2017 May.
3
Genome variability of foot-and-mouth disease virus during the short period of the 2010 epidemic in Japan.
Vet Microbiol. 2017 Feb;199:62-67. doi: 10.1016/j.vetmic.2016.12.025. Epub 2016 Dec 21.
4
Genomic Infectious Disease Epidemiology in Partially Sampled and Ongoing Outbreaks.
Mol Biol Evol. 2017 Apr 1;34(4):997-1007. doi: 10.1093/molbev/msw275.
5
Phylogenetic Tools for Generalized HIV-1 Epidemics: Findings from the PANGEA-HIV Methods Comparison.
Mol Biol Evol. 2017 Jan;34(1):185-203. doi: 10.1093/molbev/msw217. Epub 2016 Oct 7.
6
Early Decision Indicators for Foot-and-Mouth Disease Outbreaks in Non-Endemic Countries.
Front Vet Sci. 2016 Nov 30;3:109. doi: 10.3389/fvets.2016.00109. eCollection 2016.
7
SCOTTI: Efficient Reconstruction of Transmission within Outbreaks with the Structured Coalescent.
PLoS Comput Biol. 2016 Sep 28;12(9):e1005130. doi: 10.1371/journal.pcbi.1005130. eCollection 2016 Sep.
8
Reconstructing transmission trees for communicable diseases using densely sampled genetic data.
Ann Appl Stat. 2016 Mar;10(1):395-417. doi: 10.1214/15-aoas898. Epub 2016 Mar 25.
10
Epidemic Reconstruction in a Phylogenetics Framework: Transmission Trees as Partitions of the Node Set.
PLoS Comput Biol. 2015 Dec 30;11(12):e1004613. doi: 10.1371/journal.pcbi.1004613. eCollection 2015 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验