Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
BMC Genomics. 2012 Nov 21;13:649. doi: 10.1186/1471-2164-13-649.
Exome sequencing has transformed human genetic analysis and may do the same for other vertebrate model systems. However, a major challenge is sifting through the large number of sequence variants to identify the causative mutation for a given phenotype. In models like Xenopus tropicalis, an incomplete and occasionally incorrect genome assembly compounds this problem. To facilitate cloning of X. tropicalis mutants identified in forward genetic screens, we sought to combine bulk segregant analysis and exome sequencing into a single step.
Here we report the first use of exon capture sequencing to identify mutations in a non-mammalian, vertebrate model. We demonstrate that bulk segregant analysis coupled with exon capture sequencing is not only able to identify causative mutations but can also generate linkage information, facilitate the assembly of scaffolds, identify misassembles, and discover thousands of SNPs for fine mapping.
Exon capture sequencing and bulk segregant analysis is a rapid, inexpensive method to clone mutants identified in forward genetic screens. With sufficient meioses, this method can be generalized to any model system with a genome assembly, polished or unpolished, and in the latter case, it also provides many critical genomic resources.
外显子组测序改变了人类遗传分析的方式,可能也将为其他脊椎动物模型系统带来同样的变革。然而,一个主要的挑战是筛选大量的序列变异,以确定给定表型的致病突变。在像非洲爪蟾(Xenopus tropicalis)这样的模型中,不完整的、有时甚至是错误的基因组组装加剧了这个问题。为了便于对正向遗传筛选中鉴定的非洲爪蟾突变体进行克隆,我们试图将群体分离分析和外显子组测序结合到一个步骤中。
在这里,我们报告了首次将外显子捕获测序用于鉴定非哺乳动物、脊椎动物模型中的突变。我们证明,群体分离分析与外显子捕获测序相结合不仅能够鉴定致病突变,还能够生成连锁信息,有助于组装支架,识别错误组装,并发现数千个 SNP 用于精细作图。
外显子捕获测序和群体分离分析是一种快速、廉价的方法,可用于克隆正向遗传筛选中鉴定的突变体。只要有足够的减数分裂,这种方法就可以推广到任何具有基因组组装的模型系统,无论是经过修饰的还是未经修饰的,在后一种情况下,它还提供了许多关键的基因组资源。