Abu-Daya Anita, Khokha Mustafa K, Zimmerman Lyle B
Division of Developmental Biology, MRC-National Institute for Medical Research, Mill Hill, London, United Kingdom.
Genesis. 2012 Mar;50(3):164-75. doi: 10.1002/dvg.22007. Epub 2012 Feb 16.
A decade after the human genome sequence, most vertebrate gene functions remain poorly understood, limiting benefits to human health from rapidly advancing genomic technologies. Systematic in vivo functional analysis is ideally suited to the experimentally accessible Xenopus embryo, which combines embryological accessibility with a broad range of transgenic, biochemical, and gain-of-function assays. The diploid X. tropicalis adds loss-of-function genetics and enhanced genomics to this repertoire. In the last decade, diverse phenotypes have been recovered from genetic screens, mutations have been cloned, and reverse genetics in the form of TILLING and targeted gene editing have been established. Simple haploid genetics and gynogenesis and the very large number of embryos produced streamline screening and mapping. Improved genomic resources and the revolution in high-throughput sequencing are transforming mutation cloning and reverse genetic approaches. The combination of loss-of-function mutant backgrounds with the diverse array of conventional Xenopus assays offers a uniquely flexible platform for analysis of gene function in vertebrate development.
人类基因组序列公布十年后,大多数脊椎动物基因的功能仍知之甚少,这限制了快速发展的基因组技术给人类健康带来的益处。系统性的体内功能分析非常适合实验上易于操作的非洲爪蟾胚胎,它兼具胚胎学上的易操作性以及广泛的转基因、生化和功能获得性分析方法。二倍体的热带爪蟾在此基础上增加了功能缺失遗传学和增强的基因组学方法。在过去十年中,从遗传筛选中发现了多种表型,克隆了突变基因,并建立了以定向诱导基因组局部突变(TILLING)和靶向基因编辑形式的反向遗传学方法。简单的单倍体遗传学、雌核发育以及大量产出的胚胎简化了筛选和定位过程。改进的基因组资源以及高通量测序的变革正在改变突变克隆和反向遗传学方法。功能缺失突变背景与传统非洲爪蟾分析方法的多样组合为脊椎动物发育过程中的基因功能分析提供了一个独特灵活的平台。