Suppr超能文献

利用磁性各向异性胶体实现同步自组装。

Linking synchronization to self-assembly using magnetic Janus colloids.

机构信息

Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA.

出版信息

Nature. 2012 Nov 22;491(7425):578-81. doi: 10.1038/nature11619.

Abstract

Synchronization occurs widely in the natural and technological worlds, from the rhythm of applause and neuron firing to the quantum mechanics of coupled Josephson junctions, but has not been used to produce new spatial structures. Our understanding of self-assembly has evolved independently in the fields of chemistry and materials, and with a few notable exceptions has focused on equilibrium rather than dynamical systems. Here we combine these two phenomena to create synchronization-selected microtubes of Janus colloids, micron-sized spherical particles with different surface chemistry on their opposing hemispheres, which we study using imaging and computer simulation. A thin nickel film coats one hemisphere of each silica particle to generate a discoid magnetic symmetry, such that in a precessing magnetic field its dynamics retain crucial phase freedom. Synchronizing their motion, these Janus spheres self-organize into micrometre-scale tubes in which the constituent particles rotate and oscillate continuously. In addition, the microtube must be tidally locked to the particles, that is, the particles must maintain their orientation within the rotating microtube. This requirement leads to a synchronization-induced structural transition that offers various applications based on the potential to form, disintegrate and fine-tune self-assembled in-motion structures in situ. Furthermore, it offers a generalizable method of controlling structure using dynamic synchronization criteria rather than static energy minimization, and of designing new field-driven microscale devices in which components do not slavishly follow the external field.

摘要

同步现象广泛存在于自然界和技术领域,从掌声和神经元放电的节奏到耦合约瑟夫森结的量子力学,都有体现,但尚未被用于产生新的空间结构。我们对自组装的理解在化学和材料领域各自独立发展,除了少数几个显著的例外,主要集中在平衡态而非动力学系统上。在这里,我们将这两种现象结合起来,创造了同步选择的 Janus 胶体微管,Janus 胶体是一种具有不同半球面表面化学性质的微米级球形粒子,我们使用成像和计算机模拟对其进行了研究。每个二氧化硅粒子的一个半球都涂有一层薄薄的镍膜,以产生盘状的磁对称性,从而在进动磁场中保持关键的相位自由度。这些 Janus 球体通过同步运动,自组装成微米级的微管,其中组成粒子连续旋转和振荡。此外,微管必须与粒子保持潮汐锁定,也就是说,粒子必须在旋转的微管内保持其取向。这一要求导致了同步诱导的结构转变,为各种应用提供了可能性,包括形成、分解和微调现场组装的动态结构。此外,它还提供了一种使用动态同步标准而不是静态能量最小化来控制结构的通用方法,以及设计新的场驱动微尺度器件的方法,其中组件不必盲目地跟随外部场。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验