Suppr超能文献

病原体-宿主相互作用的系统生物学:在后基因组时代病原体内部的蛋白质-蛋白质相互作用网络和病原体-人类相互作用网络。

Systems biology of pathogen-host interaction: networks of protein-protein interaction within pathogens and pathogen-human interactions in the post-genomic era.

机构信息

Department of Chemical Engineering, Boǧaziçi University, Istanbul, Turkey.

出版信息

Biotechnol J. 2013 Jan;8(1):85-96. doi: 10.1002/biot.201200110. Epub 2012 Nov 29.

Abstract

Infectious diseases comprise some of the leading causes of death and disability worldwide. Interactions between pathogen and host proteins underlie the process of infection. Improved understanding of pathogen-host molecular interactions will increase our knowledge of the mechanisms involved in infection, and allow novel therapeutic solutions to be devised. Complete genome sequences for a number of pathogenic microorganisms, as well as the human host, has led to the revelation of their protein-protein interaction (PPI) networks. In this post-genomic era, pathogen-host interactions (PHIs) operating during infection can also be mapped. Detailed systematic analyses of PPI and PHI data together are required for a complete understanding of pathogenesis of infections. Here we review the striking results recently obtained during the construction and investigation of these networks. Emphasis is placed on studies producing large-scale interaction data by high-throughput experimental techniques.

摘要

传染病是全球范围内导致死亡和残疾的主要原因之一。病原体和宿主蛋白之间的相互作用是感染过程的基础。对病原体-宿主分子相互作用的深入了解将增加我们对感染机制的认识,并允许设计新的治疗方法。一些致病微生物以及人类宿主的完整基因组序列揭示了它们的蛋白质-蛋白质相互作用(PPI)网络。在这个后基因组时代,感染过程中发生的病原体-宿主相互作用(PHI)也可以被映射。为了全面了解感染的发病机制,需要对 PPI 和 PHI 数据进行详细的系统分析。在这里,我们回顾了在构建和研究这些网络时最近获得的惊人结果。重点是通过高通量实验技术产生大规模相互作用数据的研究。

相似文献

2
Systems Biology Modeling to Study Pathogen-Host Interactions.
Methods Mol Biol. 2018;1734:97-112. doi: 10.1007/978-1-4939-7604-1_10.
3
Use of systems biology to decipher host-pathogen interaction networks and predict biomarkers.
Clin Microbiol Infect. 2016 Jul;22(7):600-6. doi: 10.1016/j.cmi.2016.04.014. Epub 2016 Apr 22.
4
PHISTO: pathogen-host interaction search tool.
Bioinformatics. 2013 May 15;29(10):1357-8. doi: 10.1093/bioinformatics/btt137. Epub 2013 Mar 20.
5
A review on computational systems biology of pathogen-host interactions.
Front Microbiol. 2015 Apr 9;6:235. doi: 10.3389/fmicb.2015.00235. eCollection 2015.
6
Comprehensive host-pathogen protein-protein interaction network analysis.
BMC Bioinformatics. 2020 Sep 10;21(1):400. doi: 10.1186/s12859-020-03706-z.
9
Leveraging Experimental Details for an Improved Understanding of Host-Pathogen Interactome.
Curr Protoc Bioinformatics. 2018 Mar;61(1):8.26.1-8.26.12. doi: 10.1002/cpbi.44.
10
Host-microbe interaction systems biology: lifecycle transcriptomics and comparative genomics.
Future Microbiol. 2010 Feb;5(2):205-19. doi: 10.2217/fmb.09.125.

引用本文的文献

2
Analysis of phosphomotifs coupled to phosphoproteome and interactome unveils potential human kinase substrate proteins in SARS-CoV-2.
Front Cell Infect Microbiol. 2025 Jul 9;15:1554760. doi: 10.3389/fcimb.2025.1554760. eCollection 2025.
3
Systems-wide view of host-pathogen interactions across COVID-19 severities using integrated omics analysis.
iScience. 2024 Feb 2;27(3):109087. doi: 10.1016/j.isci.2024.109087. eCollection 2024 Mar 15.
6
Computational Network Inference for Bacterial Interactomics.
mSystems. 2022 Apr 26;7(2):e0145621. doi: 10.1128/msystems.01456-21. Epub 2022 Mar 30.
7
Uncovering the Role of Metabolism in Oomycete-Host Interactions Using Genome-Scale Metabolic Models.
Front Microbiol. 2021 Oct 11;12:748178. doi: 10.3389/fmicb.2021.748178. eCollection 2021.
8
Structural proteomics, electron cryo-microscopy and structural modeling approaches in bacteria-human protein interactions.
Med Microbiol Immunol. 2020 Jun;209(3):265-275. doi: 10.1007/s00430-020-00663-5. Epub 2020 Feb 19.
9
In silico unravelling pathogen-host signaling cross-talks via pathogen mimicry and human protein-protein interaction networks.
Comput Struct Biotechnol J. 2019 Dec 27;18:100-113. doi: 10.1016/j.csbj.2019.12.008. eCollection 2020.
10
Protein-protein interactions of human viruses.
Semin Cell Dev Biol. 2020 Mar;99:31-39. doi: 10.1016/j.semcdb.2018.07.018. Epub 2018 Jul 26.

本文引用的文献

1
Infection Strategies of Bacterial and Viral Pathogens through Pathogen-Human Protein-Protein Interactions.
Front Microbiol. 2012 Feb 14;3:46. doi: 10.3389/fmicb.2012.00046. eCollection 2012.
2
Literature mining of host-pathogen interactions: comparing feature-based supervised learning and language-based approaches.
Bioinformatics. 2012 Mar 15;28(6):867-75. doi: 10.1093/bioinformatics/bts042. Epub 2012 Jan 27.
3
Global landscape of HIV-human protein complexes.
Nature. 2011 Dec 21;481(7381):365-70. doi: 10.1038/nature10719.
4
GenBank.
Nucleic Acids Res. 2012 Jan;40(Database issue):D48-53. doi: 10.1093/nar/gkr1202. Epub 2011 Dec 5.
5
The IntAct molecular interaction database in 2012.
Nucleic Acids Res. 2012 Jan;40(Database issue):D841-6. doi: 10.1093/nar/gkr1088. Epub 2011 Nov 24.
6
MINT, the molecular interaction database: 2012 update.
Nucleic Acids Res. 2012 Jan;40(Database issue):D857-61. doi: 10.1093/nar/gkr930. Epub 2011 Nov 16.
7
Network-based prediction and analysis of HIV dependency factors.
PLoS Comput Biol. 2011 Sep;7(9):e1002164. doi: 10.1371/journal.pcbi.1002164. Epub 2011 Sep 22.
9
PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species.
Infect Immun. 2011 Nov;79(11):4286-98. doi: 10.1128/IAI.00207-11. Epub 2011 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验