Suppr超能文献

染色体重复是应对压力的一种短暂的进化解决方案。

Chromosomal duplication is a transient evolutionary solution to stress.

机构信息

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21010-5. doi: 10.1073/pnas.1211150109. Epub 2012 Nov 29.

Abstract

Aneuploidy, an abnormal number of chromosomes, is a widespread phenomenon found in unicellulars such as yeast, as well as in plants and in mammalians, especially in cancer. Aneuploidy is a genome-scale aberration that imposes a severe burden on the cell, yet under stressful conditions specific aneuploidies confer a selective advantage. This dual nature of aneuploidy raises the question of whether it can serve as a stable and sustainable evolutionary adaptation. To clarify this, we conducted a set of laboratory evolution experiments in yeast and followed the long-term dynamics of aneuploidy under diverse conditions. Here we show that chromosomal duplications are first acquired as a crude solution to stress, yet only as transient solutions that are eliminated and replaced by more efficient solutions obtained at the individual gene level. These transient dynamics of aneuploidy were repeatedly observed in our laboratory evolution experiments; chromosomal duplications gained under stress were eliminated not only when the stress was relieved, but even if it persisted. Furthermore, when stress was applied gradually rather than abruptly, alternative solutions appear to have emerged, but not aneuploidy. Our findings indicate that chromosomal duplication is a first evolutionary line of defense, that retains survivability under strong and abrupt selective pressures, yet it merely serves as a "quick fix," whereas more refined and sustainable solutions take over. Thus, in the perspective of genome evolution trajectory, aneuploidy is a useful yet short-lived intermediate that facilitates further adaptation.

摘要

非整倍体,即染色体数目异常,是一种广泛存在的现象,不仅在单细胞生物如酵母中,也在植物和哺乳动物中,特别是在癌症中存在。非整倍体是一种基因组规模的畸变,会给细胞带来严重负担,但在应激条件下,特定的非整倍体赋予了选择优势。非整倍体的这种双重性质引发了一个问题,即它是否可以作为一种稳定且可持续的进化适应。为了阐明这一点,我们在酵母中进行了一系列实验室进化实验,并在不同条件下跟踪了非整倍体的长期动态。在这里,我们表明染色体加倍最初是作为一种应对应激的粗糙解决方案获得的,但只是作为瞬时解决方案,会被个体基因水平上获得的更有效的解决方案所消除和取代。这些非整倍体的瞬态动力学在我们的实验室进化实验中反复出现;在应激下获得的染色体加倍不仅在应激缓解时被消除,即使应激持续存在时也会被消除。此外,当应激逐渐施加而不是突然施加时,似乎出现了替代解决方案,但不是非整倍体。我们的研究结果表明,染色体加倍是第一道进化防线,它在强烈和突然的选择压力下保持生存能力,但它只是一种“快速修复”,而更精细和可持续的解决方案则取而代之。因此,从基因组进化轨迹的角度来看,非整倍体是一种有用但短暂的中间状态,有助于进一步适应。

相似文献

1
Chromosomal duplication is a transient evolutionary solution to stress.染色体重复是应对压力的一种短暂的进化解决方案。
Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):21010-5. doi: 10.1073/pnas.1211150109. Epub 2012 Nov 29.
9
Polyploidy can drive rapid adaptation in yeast.多倍体可推动酵母的快速适应性变化。
Nature. 2015 Mar 19;519(7543):349-52. doi: 10.1038/nature14187. Epub 2015 Mar 2.

引用本文的文献

4
Fitness consequences of sex chromosome aneuploidy in Drosophila melanogaster.黑腹果蝇性染色体非整倍体的适应性后果。
PLoS Genet. 2025 Jun 3;21(6):e1011703. doi: 10.1371/journal.pgen.1011703. eCollection 2025 Jun.
8
Genome duplication in a long-term multicellularity evolution experiment.长期多细胞性进化实验中的基因组加倍
Nature. 2025 Mar;639(8055):691-699. doi: 10.1038/s41586-025-08689-6. Epub 2025 Mar 5.

本文引用的文献

2
Causes and consequences of aneuploidy in cancer.癌症中非整倍体的原因和后果。
Nat Rev Genet. 2012 Jan 24;13(3):189-203. doi: 10.1038/nrg3123.
5
The aneuploidy paradox: costs and benefits of an incorrect karyotype.非整倍体悖论:错误核型的代价和益处。
Trends Genet. 2011 Nov;27(11):446-53. doi: 10.1016/j.tig.2011.07.003. Epub 2011 Aug 26.
6
Aneuploidy drives genomic instability in yeast.非整倍性导致酵母中的基因组不稳定性。
Science. 2011 Aug 19;333(6045):1026-30. doi: 10.1126/science.1206412.
9
An integrated approach to uncover drivers of cancer.一种揭示癌症驱动因素的综合方法。
Cell. 2010 Dec 10;143(6):1005-17. doi: 10.1016/j.cell.2010.11.013. Epub 2010 Dec 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验