Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
Cell. 2010 Dec 10;143(6):1005-17. doi: 10.1016/j.cell.2010.11.013. Epub 2010 Dec 2.
Systematic characterization of cancer genomes has revealed a staggering number of diverse aberrations that differ among individuals, such that the functional importance and physiological impact of most tumor genetic alterations remain poorly defined. We developed a computational framework that integrates chromosomal copy number and gene expression data for detecting aberrations that promote cancer progression. We demonstrate the utility of this framework using a melanoma data set. Our analysis correctly identified known drivers of melanoma and predicted multiple tumor dependencies. Two dependencies, TBC1D16 and RAB27A, confirmed empirically, suggest that abnormal regulation of protein trafficking contributes to proliferation in melanoma. Together, these results demonstrate the ability of integrative Bayesian approaches to identify candidate drivers with biological, and possibly therapeutic, importance in cancer.
系统的癌症基因组特征分析揭示了大量不同的异常,这些异常在个体之间存在差异,因此大多数肿瘤遗传改变的功能重要性和生理影响仍未得到明确界定。我们开发了一种计算框架,该框架整合了染色体拷贝数和基因表达数据,用于检测促进癌症进展的异常。我们使用黑色素瘤数据集证明了该框架的实用性。我们的分析正确识别了黑色素瘤的已知驱动因素,并预测了多个肿瘤依赖性。经过实证验证的两个依赖性(TBC1D16 和 RAB27A)表明,蛋白质运输的异常调节有助于黑色素瘤的增殖。总之,这些结果表明,整合贝叶斯方法能够识别具有生物学和潜在治疗意义的候选驱动因素。