Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
Genes Brain Behav. 2013 Mar;12(2):166-80. doi: 10.1111/gbb.12010. Epub 2013 Jan 10.
Neural sexual differentiation begins during embryogenesis and continues after birth for a variable amount of time depending on the species and brain region. Because gonadal hormones were the first factors identified in neural sexual differentiation, their role in this process has eclipsed investigation of other factors. Here, we use a mouse with a spontaneous translocation that produces four different unique sets of sex chromosomes. Each genotype has one normal X-chromosome and a unique second sex chromosome creating the following genotypes: XY(x) , XX, XY() , XX(Y) () . This Y() mouse line is used by several laboratories to study two human aneuploid conditions: Turner and Klinefelter syndromes. As sex chromosome number affects behavior and brain morphology, we surveyed brain gene expression at embryonic days 11.5 and 18.5 to isolate X-chromosome dose effects in the developing brain as possible mechanistic changes underlying the phenotypes. We compared gene expression differences between gonadal males and females as well as individuals with one vs. two X-chromosomes. We present data showing, in addition to genes reported to escape X-inactivation, a number of autosomal genes are differentially expressed between the sexes and in mice with different numbers of X-chromosomes. Based on our results, we can now identify the genes present in the region around the chromosomal break point that produces the Y(*) model. Our results also indicate an interaction between gonadal development and sex chromosome number that could further elucidate the role of sex chromosome genes and hormones in the sexual differentiation of behavior.
神经性别分化始于胚胎发生期,并在出生后继续进行,其持续时间因物种和大脑区域而异。由于性腺激素是在神经性别分化中首先确定的因素,因此它们在这个过程中的作用已经超过了对其他因素的研究。在这里,我们使用一种自发易位的小鼠,产生了四组不同的独特性染色体。每个基因型都有一条正常的 X 染色体和一条独特的第二条性染色体,产生以下基因型:XY(x)、XX、XY()、XX(Y)()。这条 Y() 小鼠品系被几个实验室用于研究两种人类非整倍体情况:特纳综合征和克兰费尔特综合征。由于性染色体数量会影响行为和大脑形态,我们在胚胎第 11.5 天和第 18.5 天调查了大脑基因表达,以分离发育中大脑的 X 染色体剂量效应,作为潜在的表型背后的机制变化。我们比较了性腺雄性和雌性之间以及具有一条或两条 X 染色体的个体之间的基因表达差异。我们提出的数据表明,除了报告逃避 X 失活的基因外,许多常染色体基因在性别之间以及在具有不同数量 X 染色体的小鼠中存在差异表达。基于我们的结果,我们现在可以确定产生 Y(*)模型的染色体断裂点周围区域存在的基因。我们的结果还表明,性腺发育和性染色体数量之间存在相互作用,这可能进一步阐明性染色体基因和激素在行为性别分化中的作用。