Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
Trends Genet. 2013 May;29(5):273-9. doi: 10.1016/j.tig.2012.11.001. Epub 2012 Dec 6.
A central undertaking in synthetic biology (SB) is the quest for the 'minimal genome'. However, 'minimal sets' of essential genes are strongly context-dependent and, in all prokaryotic genomes sequenced to date, not a single protein-coding gene is entirely conserved. Furthermore, a lack of consensus in the field as to what attributes make a gene truly essential adds another aspect of variation. Thus, a universal minimal genome remains elusive. Here, as an alternative to defining a minimal genome, we propose that the concept of gene persistence can be used to classify genes needed for robust long-term survival. Persistent genes, although not ubiquitous, are conserved in a majority of genomes, tend to be expressed at high levels, and are frequently located on the leading DNA strand. These criteria impose constraints on genome organization, and these are important considerations for engineering cells and for creating cellular life-like forms in SB.
合成生物学的一个核心任务是追求“最小基因组”。然而,必需基因的“最小集合”强烈依赖于上下文,在迄今为止测序的所有原核基因组中,没有一个单一的蛋白质编码基因是完全保守的。此外,由于缺乏共识,即哪些属性使一个基因真正必不可少,这增加了另一个变化方面。因此,普遍的最小基因组仍然难以捉摸。在这里,作为定义最小基因组的替代方案,我们提出可以使用基因持久性的概念来对需要稳健长期生存的基因进行分类。虽然不是普遍存在的,但持久性基因在大多数基因组中是保守的,往往表达水平较高,并且经常位于领先的 DNA 链上。这些标准对基因组组织施加了限制,这对于工程细胞和在 SB 中创建类细胞生命形式是重要的考虑因素。