Suppr超能文献

纤维蛋白溶解建模:一种三维随机多尺度模型。

Modelling fibrinolysis: a 3D stochastic multiscale model.

作者信息

Bannish Brittany E, Keener James P, Fogelson Aaron L

机构信息

Department of Mathematics and Statistics, University of Central Oklahoma, 100 North University Dr., Box 129, Edmond, OK 73034, USA.

出版信息

Math Med Biol. 2014 Mar;31(1):17-44. doi: 10.1093/imammb/dqs029. Epub 2012 Dec 4.

Abstract

Fibrinolysis, the proteolytic degradation of the fibrin fibres that stabilize blood clots, is initiated when tissue-type plasminogen activator (tPA) activates plasminogen to plasmin, the main fibrinolytic enzyme. Many experiments have shown that coarse clots made of thick fibres lyse more quickly than fine clots made of thin fibres, despite the fact that individual thick fibres lyse more slowly than individual thin fibres. The generally accepted explanation for this is that a coarse clot with fewer fibres to transect will be degraded faster than a fine clot with a higher fibre density. Other experiments show the opposite result. The standard mathematical tool for investigating fibrinolysis has been deterministic reaction-diffusion models, but due to low tPA concentrations, stochastic models may be more appropriate. We develop a 3D stochastic multiscale model of fibrinolysis. A microscale model representing a fibre cross section and containing detailed biochemical reactions provides information about single fibre lysis times, the number of plasmin molecules that can be activated by a single tPA molecule and the length of time tPA stays bound to a given fibre cross section. Data from the microscale model are used in a macroscale model of the full fibrin clot, from which we obtain lysis front velocities and tPA distributions. We find that the fibre number impacts lysis speed, but so does the number of tPA molecules relative to the surface area of the clot exposed to those molecules. Depending on the values of these two quantities (tPA number and surface area), for given kinetic parameters, the model predicts coarse clots lyse faster or slower than fine clots, thus providing a possible explanation for the divergent experimental observations.

摘要

纤维蛋白溶解是指稳定血凝块的纤维蛋白纤维发生蛋白水解降解,当组织型纤溶酶原激活剂(tPA)将纤溶酶原激活为纤溶酶(主要的纤维蛋白溶解酶)时,纤维蛋白溶解就开始了。许多实验表明,由粗纤维构成的粗大凝块比由细纤维构成的细小凝块溶解得更快,尽管单个粗纤维比单个细纤维溶解得更慢。对此普遍接受的解释是,与纤维密度较高的细小凝块相比,需要横切的纤维较少的粗大凝块会更快降解。其他实验则显示了相反的结果。研究纤维蛋白溶解的标准数学工具一直是确定性反应扩散模型,但由于tPA浓度较低,随机模型可能更合适。我们开发了一个纤维蛋白溶解的三维随机多尺度模型。一个代表纤维横截面并包含详细生化反应的微观模型提供了关于单根纤维溶解时间、单个tPA分子可激活的纤溶酶分子数量以及tPA与给定纤维横截面结合的时间长度的信息。微观模型的数据被用于完整纤维蛋白凝块的宏观模型中,从中我们获得了溶解前沿速度和tPA分布。我们发现纤维数量会影响溶解速度,但相对于暴露于这些分子的凝块表面积而言,tPA分子的数量也会产生影响。对于给定的动力学参数,根据这两个量(tPA数量和表面积)的值,该模型预测粗大凝块比细小凝块溶解得更快或更慢,从而为不同的实验观察结果提供了一种可能的解释。

相似文献

1
Modelling fibrinolysis: a 3D stochastic multiscale model.
Math Med Biol. 2014 Mar;31(1):17-44. doi: 10.1093/imammb/dqs029. Epub 2012 Dec 4.
2
Modelling fibrinolysis: 1D continuum models.
Math Med Biol. 2014 Mar;31(1):45-64. doi: 10.1093/imammb/dqs030. Epub 2012 Dec 6.
3
The effect of plasmin-mediated degradation on fibrinolysis and tissue plasminogen activator diffusion.
Biophys J. 2024 Mar 5;123(5):610-621. doi: 10.1016/j.bpj.2024.02.002. Epub 2024 Feb 15.
6
Inner clot diffusion and permeation during fibrinolysis.
Biophys J. 1993 Dec;65(6):2622-43. doi: 10.1016/S0006-3495(93)81314-6.
7
Enhanced fibrinolysis by proteolysed coagulation factor Xa.
Biochim Biophys Acta. 2010 Apr;1804(4):723-30. doi: 10.1016/j.bbapap.2009.11.011. Epub 2009 Nov 18.
8
Co-ordinated spatial propagation of blood plasma clotting and fibrinolytic fronts.
PLoS One. 2017 Jul 7;12(7):e0180668. doi: 10.1371/journal.pone.0180668. eCollection 2017.
9
Zinc delays clot lysis by attenuating plasminogen activation and plasmin-mediated fibrin degradation.
Thromb Haemost. 2015 Jun;113(6):1278-88. doi: 10.1160/TH14-09-0771. Epub 2015 Mar 19.

引用本文的文献

1
A mathematical model of plasmin-mediated fibrinolysis of single fibrin fibers.
PLoS Comput Biol. 2024 Dec 20;20(12):e1012684. doi: 10.1371/journal.pcbi.1012684. eCollection 2024 Dec.
3
The effect of plasmin-mediated degradation on fibrinolysis and tissue plasminogen activator diffusion.
Biophys J. 2024 Mar 5;123(5):610-621. doi: 10.1016/j.bpj.2024.02.002. Epub 2024 Feb 15.
4
Internal fibrinolysis of fibrin clots is driven by pore expansion.
Sci Rep. 2024 Feb 1;14(1):2623. doi: 10.1038/s41598-024-52844-4.
5
A simplified mesoscale 3D model for characterizing fibrinolysis under flow conditions.
Sci Rep. 2023 Aug 22;13(1):13681. doi: 10.1038/s41598-023-40973-1.
6
Probing interactions of red blood cells and contracting fibrin platelet clots.
Biophys J. 2023 Nov 7;122(21):4123-4134. doi: 10.1016/j.bpj.2023.08.009. Epub 2023 Aug 19.
7
Fibrinolysis: an illustrated review.
Res Pract Thromb Haemost. 2023 Feb 17;7(2):100081. doi: 10.1016/j.rpth.2023.100081. eCollection 2023 Feb.
8
Citrullinated fibrinogen forms densely packed clots with decreased permeability.
J Thromb Haemost. 2022 Dec;20(12):2862-2872. doi: 10.1111/jth.15875. Epub 2022 Sep 27.
9
Effects of clot contraction on clot degradation: A mathematical and experimental approach.
Biophys J. 2022 Sep 6;121(17):3271-3285. doi: 10.1016/j.bpj.2022.07.023. Epub 2022 Aug 3.
10
Engineered Molecular Therapeutics Targeting Fibrin and the Coagulation System: a Biophysical Perspective.
Biophys Rev. 2022 Apr 6;14(2):427-461. doi: 10.1007/s12551-022-00950-w. eCollection 2022 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验