Bannish Brittany E, Keener James P, Fogelson Aaron L
Department of Mathematics and Statistics, University of Central Oklahoma, 100 North University Dr., Box 129, Edmond, OK 73034, USA.
Math Med Biol. 2014 Mar;31(1):17-44. doi: 10.1093/imammb/dqs029. Epub 2012 Dec 4.
Fibrinolysis, the proteolytic degradation of the fibrin fibres that stabilize blood clots, is initiated when tissue-type plasminogen activator (tPA) activates plasminogen to plasmin, the main fibrinolytic enzyme. Many experiments have shown that coarse clots made of thick fibres lyse more quickly than fine clots made of thin fibres, despite the fact that individual thick fibres lyse more slowly than individual thin fibres. The generally accepted explanation for this is that a coarse clot with fewer fibres to transect will be degraded faster than a fine clot with a higher fibre density. Other experiments show the opposite result. The standard mathematical tool for investigating fibrinolysis has been deterministic reaction-diffusion models, but due to low tPA concentrations, stochastic models may be more appropriate. We develop a 3D stochastic multiscale model of fibrinolysis. A microscale model representing a fibre cross section and containing detailed biochemical reactions provides information about single fibre lysis times, the number of plasmin molecules that can be activated by a single tPA molecule and the length of time tPA stays bound to a given fibre cross section. Data from the microscale model are used in a macroscale model of the full fibrin clot, from which we obtain lysis front velocities and tPA distributions. We find that the fibre number impacts lysis speed, but so does the number of tPA molecules relative to the surface area of the clot exposed to those molecules. Depending on the values of these two quantities (tPA number and surface area), for given kinetic parameters, the model predicts coarse clots lyse faster or slower than fine clots, thus providing a possible explanation for the divergent experimental observations.
纤维蛋白溶解是指稳定血凝块的纤维蛋白纤维发生蛋白水解降解,当组织型纤溶酶原激活剂(tPA)将纤溶酶原激活为纤溶酶(主要的纤维蛋白溶解酶)时,纤维蛋白溶解就开始了。许多实验表明,由粗纤维构成的粗大凝块比由细纤维构成的细小凝块溶解得更快,尽管单个粗纤维比单个细纤维溶解得更慢。对此普遍接受的解释是,与纤维密度较高的细小凝块相比,需要横切的纤维较少的粗大凝块会更快降解。其他实验则显示了相反的结果。研究纤维蛋白溶解的标准数学工具一直是确定性反应扩散模型,但由于tPA浓度较低,随机模型可能更合适。我们开发了一个纤维蛋白溶解的三维随机多尺度模型。一个代表纤维横截面并包含详细生化反应的微观模型提供了关于单根纤维溶解时间、单个tPA分子可激活的纤溶酶分子数量以及tPA与给定纤维横截面结合的时间长度的信息。微观模型的数据被用于完整纤维蛋白凝块的宏观模型中,从中我们获得了溶解前沿速度和tPA分布。我们发现纤维数量会影响溶解速度,但相对于暴露于这些分子的凝块表面积而言,tPA分子的数量也会产生影响。对于给定的动力学参数,根据这两个量(tPA数量和表面积)的值,该模型预测粗大凝块比细小凝块溶解得更快或更慢,从而为不同的实验观察结果提供了一种可能的解释。