Suppr超能文献

从数学建模和实验角度探讨纤维蛋白溶解和溶栓的分子和物理机制。

Molecular and Physical Mechanisms of Fibrinolysis and Thrombolysis from Mathematical Modeling and Experiments.

机构信息

University of Central Oklahoma, Department of Mathematics and Statistics, Edmond, OK, 73034, USA.

University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA, 19104, USA.

出版信息

Sci Rep. 2017 Aug 7;7(1):6914. doi: 10.1038/s41598-017-06383-w.

Abstract

Despite the common use of thrombolytic drugs, especially in stroke treatment, there are many conflicting studies on factors affecting fibrinolysis. Because of the complexity of the fibrinolytic system, mathematical models closely tied with experiments can be used to understand relationships within the system. When tPA is introduced at the clot or thrombus edge, lysis proceeds as a front. We developed a multiscale model of fibrinolysis that includes the main chemical reactions: the microscale model represents a single fiber cross-section; the macroscale model represents a three-dimensional fibrin clot. The model successfully simulates the spatial and temporal locations of all components and elucidates how lysis rates are determined by the interplay between the number of tPA molecules in the system and clot structure. We used the model to identify kinetic conditions necessary for fibrinolysis to proceed as a front. We found that plasmin regulates the local concentration of tPA through forced unbinding via degradation of fibrin and tPA release. The mechanism of action of tPA is affected by the number of molecules present with respect to fibrin fibers. The physical mechanism of plasmin action (crawling) and avoidance of inhibition is defined. Many of these new findings have significant implications for thrombolytic treatment.

摘要

尽管溶栓药物(尤其是在中风治疗中)的应用非常普遍,但仍有许多相互矛盾的研究涉及影响纤维蛋白溶解的因素。由于纤维蛋白溶解系统的复杂性,可使用与实验紧密结合的数学模型来理解系统内的关系。当 tPA 被引入血栓或血栓边缘时,溶解会呈前沿状进行。我们开发了一种纤维蛋白溶解的多尺度模型,其中包括主要的化学反应:微观模型代表单个纤维横截面;宏观模型代表三维纤维蛋白凝块。该模型成功模拟了所有成分的时空位置,并阐明了纤维蛋白溶解率如何通过系统中 tPA 分子的数量与血栓结构的相互作用来确定。我们使用该模型确定了纤维蛋白溶解呈前沿状进行所需的动力学条件。我们发现,纤溶酶通过降解纤维蛋白和释放 tPA 来强制非结合,从而调节局部 tPA 浓度。tPA 的作用机制受纤维蛋白纤维上存在的分子数量的影响。纤溶酶作用的物理机制(爬行)和避免抑制的机制也得到了定义。这些新发现中的许多都对溶栓治疗具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa00/5547096/d04697581d5c/41598_2017_6383_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验