Capuano Ana W, Dawson Jeffrey D, Gray Gregory C
Center for Emerging Infectious Diseases, Department of Epidemiology, University of Iowa College of Public Health, 2501 Crosspark Road, Coralville, IA 52241, USA.
Influenza Other Respir Viruses. 2007 May;1(3):87-93. doi: 10.1111/j.1750-2659.2007.00014.x.
Epidemiological studies of zoonotic influenza and other infectious diseases often rely upon analysis of levels of antibody titer. In most of these studies, the antibody titer data are dichotomized based on a chosen cut-point and analyzed with a traditional binary logistic regression. However, cut-points are often arbitrary, particularly those selected for rare diseases or for infections for which serologic assays are imperfect. Alternatively,the data can be left in the original form, as ordinal levels of antibody titer, and analyzed using the proportional odds model. We show why this approach yields superior power to detect risk factors. Additionally, we illustrate the advantages of using the proportional odds model with the analyses of zoonotic influenza antibody titer data.
人畜共患流感及其他传染病的流行病学研究通常依赖于抗体滴度水平分析。在大多数此类研究中,抗体滴度数据基于选定的切点进行二分,并采用传统的二元逻辑回归进行分析。然而,切点往往是任意设定的,尤其是那些针对罕见疾病或血清学检测不完善的感染所选定的切点。或者,数据可以保留原始形式,即抗体滴度的有序水平,并使用比例优势模型进行分析。我们展示了为什么这种方法在检测风险因素方面具有更高的效能。此外,我们通过对人畜共患流感抗体滴度数据的分析来说明使用比例优势模型的优点。