Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
Comput Intell Neurosci. 2012;2012:209590. doi: 10.1155/2012/209590. Epub 2012 Nov 14.
We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s) onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS) with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.
我们提出了一种用于识别由通信通道与异步采样器级联而成的系统中的通道的形式化方法。该通道被建模为多维滤波器,而异步采样器的模型则来自神经科学和通信领域,包括积分和触发神经元、异步 sigma/delta 调制器以及与过零检测器级联的通用振荡器。我们设计了通道识别算法,这些算法可以恢复滤波器在输入信号空间上的投影,对于标量和向量测试信号都是无损失的。测试信号被建模为具有 Dirichlet 核的再生核希尔伯特空间 (RKHS) 的元素。在测试信号空间的带宽和阶数的适当极限条件下,滤波器的投影收敛于滤波器的冲激响应。我们证明了我们的结果适用于广泛的 RKHS 类,包括有限能量带限信号的空间。我们还将我们的通道识别结果扩展到噪声电路。