Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK.
Curr Biol. 2012 Aug 7;22(15):1371-80. doi: 10.1016/j.cub.2012.05.047. Epub 2012 Jun 14.
In fly photoreceptors, light is focused onto a photosensitive waveguide, the rhabdomere, consisting of tens of thousands of microvilli. Each microvillus is capable of generating elementary responses, quantum bumps, in response to single photons using a stochastically operating phototransduction cascade. Whereas much is known about the cascade reactions, less is known about how the concerted action of the microvilli population encodes light changes into neural information and how the ultrastructure and biochemical machinery of photoreceptors of flies and other insects evolved in relation to the information sampling and processing they perform.
We generated biophysically realistic fly photoreceptor models, which accurately simulate the encoding of visual information. By comparing stochastic simulations with single cell recordings from Drosophila photoreceptors, we show how adaptive sampling by 30,000 microvilli captures the temporal structure of natural contrast changes. Following each bump, individual microvilli are rendered briefly (~100-200 ms) refractory, thereby reducing quantum efficiency with increasing intensity. The refractory period opposes saturation, dynamically and stochastically adjusting availability of microvilli (bump production rate: sample rate), whereas intracellular calcium and voltage adapt bump amplitude and waveform (sample size). These adapting sampling principles result in robust encoding of natural light changes, which both approximates perceptual contrast constancy and enhances novel events under different light conditions, and predict information processing across a range of species with different visual ecologies.
These results clarify why fly photoreceptors are structured the way they are and function as they do, linking sensory information to sensory evolution and revealing benefits of stochasticity for neural information processing.
在蝇类光感受器中,光被聚焦到由成千上万根微绒毛组成的感光波导——纤毛束上。每个微绒毛都能够通过随机运作的光转导级联产生基本响应,即量子 bumps,以响应单个光子。虽然人们对级联反应了解很多,但对于微绒毛群体的协同作用如何将光变化编码为神经信息,以及蝇类和其他昆虫的光感受器的超微结构和生化机制如何与其执行的信息采样和处理相关进化,了解得较少。
我们生成了具有生物物理意义的蝇类光感受器模型,能够准确模拟视觉信息的编码。通过将随机模拟与来自果蝇光感受器的单细胞记录进行比较,我们展示了 30000 根微绒毛的自适应采样如何捕获自然对比度变化的时间结构。在每个 bumps 之后,单个微绒毛会短暂地(~100-200ms)变得不应答,从而随着强度的增加降低量子效率。不应答期与饱和相反,动态和随机调整微绒毛的可用性(bump 产生率:采样率),而细胞内钙和电压适应 bump 幅度和波形(采样大小)。这些自适应采样原则导致了对自然光变化的稳健编码,既能近似感知对比度恒定,又能在不同光照条件下增强新事件,并预测具有不同视觉生态的多种物种的信息处理。
这些结果阐明了为什么蝇类光感受器的结构和功能是这样的,将感觉信息与感觉进化联系起来,并揭示了随机性对神经信息处理的好处。