Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):924-9. doi: 10.1073/pnas.1207104110. Epub 2012 Dec 31.
The protein kinase catalytic domain contains several conserved residues of unknown functions. Here, using a combination of computational and experimental approaches, we show that the function of some of these residues is to maintain the backbone geometry of the active site in a strained conformation. Specifically, we find that the backbone geometry of the catalytically important HRD motif deviates from ideality in high-resolution structures and the strained geometry results in favorable hydrogen bonds with conserved noncatalytic residues in the active site. In particular, a conserved aspartate in the F-helix hydrogen bonds to the strained HRD backbone in diverse eukaryotic and eukaryotic-like protein kinase crystal structures. Mutations that alter this hydrogen-bonding interaction impair catalytic activity in Aurora kinase. Although the backbone strain is present in most active conformations, several inactive conformations lack the strain because of a peptide flip in the HRD backbone. The peptide flip is correlated with loss of hydrogen bonds with the F-helix aspartate as well as with other interactions associated with kinase regulation. Within protein kinases that are regulated by activation loop phosphorylation, the strained residue is an arginine, which coordinates with the activation loop phosphate. Based on analysis of strain across the protein kinase superfamily, we propose a model in which backbone strain co-evolved with conserved residues for allosteric control of catalytic activity. Our studies provide new clues for the design of allosteric protein kinase inhibitors.
蛋白激酶催化结构域包含几个具有未知功能的保守残基。在这里,我们采用计算和实验相结合的方法,表明这些残基中的一些功能是保持活性位点的骨架几何形状处于应变构象。具体来说,我们发现催化重要的 HRD 基序的骨架几何形状在高分辨率结构中偏离理想状态,应变几何形状导致与活性位点中保守的非催化残基形成有利的氢键。特别是,F 螺旋中的保守天冬氨酸与不同真核和真核样蛋白激酶晶体结构中应变的 HRD 骨架形成氢键。改变这种氢键相互作用的突变会损害 Aurora 激酶的催化活性。尽管骨架应变存在于大多数活性构象中,但由于 HRD 骨架中的肽翻转,几种无活性构象缺乏应变。肽翻转与与 F 螺旋天冬氨酸的氢键丧失以及与激酶调节相关的其他相互作用相关。在受激活环磷酸化调节的蛋白激酶中,应变残基是一个精氨酸,它与激活环磷酸酯配位。基于对蛋白激酶超家族中应变的分析,我们提出了一个模型,其中骨架应变与所有构象控制催化活性的保守残基共同进化。我们的研究为设计别构蛋白激酶抑制剂提供了新的线索。