Suppr超能文献

探讨倾向评分匹配和加权法治疗效果估计值之间的差异:一项使用 STAR*D 试验数据的演示。

Investigating differences in treatment effect estimates between propensity score matching and weighting: a demonstration using STAR*D trial data.

机构信息

Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill, NC 27599, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2013 Feb;22(2):138-44. doi: 10.1002/pds.3396. Epub 2012 Dec 28.

Abstract

PURPOSE

The choice of propensity score (PS) implementation influences treatment effect estimates not only because different methods estimate different quantities, but also because different estimators respond in different ways to phenomena such as treatment effect heterogeneity and limited availability of potential matches. Using effectiveness data, we describe lessons learned from sensitivity analyses with matched and weighted estimates.

METHODS

With subsample data (N = 1292) from Sequenced Treatment Alternatives to Relieve Depression, a 2001-2004 effectiveness trial of depression treatments, we implemented PS matching and weighting to estimate the treatment effect in the treated and conducted multiple sensitivity analyses.

RESULTS

Matching and weighting both balanced covariates but yielded different samples and treatment effect estimates (matched RR 1.00, 95% CI: 0.75-1.34; weighted RR 1.28, 95% CI: 0.97-1.69). In sensitivity analyses, as increasing numbers of observations at both ends of the PS distribution were excluded from the weighted analysis, weighted estimates approached the matched estimate (weighted RR 1.04, 95% CI 0.77-1.39 after excluding all observations below the 5th percentile of the treated and above the 95th percentile of the untreated). Treatment appeared to have benefits only in the highest and lowest PS strata.

CONCLUSIONS

Matched and weighted estimates differed due to incomplete matching, sensitivity of weighted estimates to extreme observations, and possibly treatment effect heterogeneity. PS analysis requires identifying the population and treatment effect of interest, selecting an appropriate implementation method, and conducting and reporting sensitivity analyses. Weighted estimation especially should include sensitivity analyses relating to influential observations, such as those treated contrary to prediction.

摘要

目的

倾向评分(PS)的实施选择不仅会影响治疗效果估计,因为不同的方法估计不同的量,还会因为不同的估计器对治疗效果异质性和潜在匹配的有限可用性等现象的反应方式不同。使用有效性数据,我们描述了来自匹配和加权估计的敏感性分析中获得的经验教训。

方法

使用来自 2001-2004 年抑郁症治疗有效性试验——序贯治疗选择缓解抑郁(Sequenced Treatment Alternatives to Relieve Depression)的子样本数据(N=1292),我们实施了 PS 匹配和加权来估计治疗组中的治疗效果,并进行了多次敏感性分析。

结果

匹配和加权都平衡了协变量,但产生了不同的样本和治疗效果估计(匹配 RR 1.00,95%CI:0.75-1.34;加权 RR 1.28,95%CI:0.97-1.69)。在敏感性分析中,随着 PS 分布两端的观测值数量不断增加,加权分析中排除了加权估计值越来越接近匹配估计值(在排除了治疗组第 5 百分位以下和未治疗组第 95 百分位以上的所有观测值后,加权 RR 1.04,95%CI 0.77-1.39)。治疗似乎只在 PS 最高和最低分层中具有益处。

结论

由于不完全匹配、加权估计对极端观测值的敏感性以及可能存在治疗效果异质性,匹配和加权估计值存在差异。PS 分析需要确定感兴趣的人群和治疗效果,选择适当的实施方法,并进行和报告敏感性分析。加权估计特别是应该包括与有影响力的观测值相关的敏感性分析,例如那些与预测相悖的治疗。

相似文献

引用本文的文献

本文引用的文献

8
Constructing inverse probability weights for marginal structural models.构建边际结构模型的逆概率权重。
Am J Epidemiol. 2008 Sep 15;168(6):656-64. doi: 10.1093/aje/kwn164. Epub 2008 Aug 5.
9
Missing data analysis: making it work in the real world.缺失数据分析:使其在现实世界中发挥作用。
Annu Rev Psychol. 2009;60:549-76. doi: 10.1146/annurev.psych.58.110405.085530.
10
Weighting regressions by propensity scores.通过倾向得分进行加权回归。
Eval Rev. 2008 Aug;32(4):392-409. doi: 10.1177/0193841X08317586.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验