Wang Qian, Yap Pew-Thian, Wu Guorong, Shen Dinggang
Department of Computer Science, University of North Carolina at Chapel Hill, USA.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):17-24. doi: 10.1007/978-3-642-23629-7_3.
DTI tractography allows unprecedented understanding of brain neural connectivity in-vivo by capturing water diffusion patterns in brain white-matter microstructures. However, tractography algorithms often output hundreds of thousands of fibers, rendering the computation needed for subsequent data analysis intractable. A remedy is to group the fibers into bundles using fiber clustering techniques. Most existing fiber clustering methods, however, rely on fiber geometrical information only by viewing fibers as curves in the 3D Euclidean space. The important neuroanatomical aspect of the fibers is mostly ignored. In this paper, neuroanatomical information is encapsulated in a feature vector called the associativity vector, which functions as the "fingerprint" for each fiber and depicts the connectivity of the fiber with respect to individual anatomies. Using the associativity vectors of fibers, we model the fibers as observations sampled from multivariate Gaussian mixtures in the feature space. An expectation-maximization clustering approach is then employed to group the fibers into 16 major bundles. Experimental results indicate that the proposed method groups the fibers into anatomically meaningful bundles, which are highly consistent across subjects.
扩散张量成像纤维束成像通过捕捉脑白质微结构中的水扩散模式,使人们能够在活体状态下以前所未有的方式理解脑神经网络连接。然而,纤维束成像算法通常会输出数十万条纤维,使得后续数据分析所需的计算变得难以处理。一种解决方法是使用纤维聚类技术将纤维分组为束。然而,大多数现有的纤维聚类方法仅通过将纤维视为三维欧几里得空间中的曲线来依赖纤维的几何信息。纤维重要的神经解剖学方面大多被忽略。在本文中,神经解剖学信息被封装在一个称为关联向量的特征向量中,该向量作为每条纤维的“指纹”,描绘了纤维相对于各个解剖结构的连接性。利用纤维的关联向量,我们将纤维建模为从特征空间中的多元高斯混合模型采样得到的观测值。然后采用期望最大化聚类方法将纤维分组为16个主要束。实验结果表明,所提出的方法将纤维分组为具有解剖学意义的束,这些束在不同受试者之间高度一致。