Schultz Thomas
Max Planck Institute for Intelligent Systems, Tübingen, Germany.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):493-500. doi: 10.1007/978-3-642-33454-2_61.
Having to determine an adequate number of fiber directions is a fundamental limitation of multi-compartment models in diffusion MRI. This paper proposes a novel strategy to approach this problem, based on simulating data that closely follows the characteristics of the measured data. This provides the ground truth required to determine the number of directions that optimizes a formal measure of accuracy, while allowing us to transfer the result to real data by support vector regression. The method is shown to result in plausible and reproducible decisions on three repeated scans of the same subject. When combined with the ball-and-stick model, it produces directional estimates comparable to constrained spherical deconvolution, but with significantly smaller variance between re-scans, and at a reduced computational cost.
必须确定足够数量的纤维方向是扩散磁共振成像中多室模型的一个基本限制。本文提出了一种新颖的策略来解决这个问题,该策略基于模拟紧密遵循测量数据特征的数据。这提供了确定优化形式化准确性度量的方向数量所需的基本事实,同时允许我们通过支持向量回归将结果转移到真实数据上。该方法在对同一受试者的三次重复扫描中产生了合理且可重复的决策。当与球棒模型结合使用时,它产生的方向估计与约束球形反卷积相当,但在重复扫描之间的方差显著更小,且计算成本降低。