University of Manchester, School of Pharmacy and Pharmaceutical Sciences, Oxford Road, Manchester, UK.
Expert Opin Drug Discov. 2013 Mar;8(3):263-76. doi: 10.1517/17460441.2013.752812. Epub 2013 Jan 7.
Computational chemistry has become an established and valuable component in structure-based drug design. However the chemical complexity of many ligands and active sites challenges the accuracy of the empirical potentials commonly used to describe these systems. Consequently, there is a growing interest in utilizing electronic structure methods for addressing problems in protein-ligand recognition.
In this review, the authors discuss recent progress in the development and application of quantum chemical approaches to modeling protein-ligand interactions. The authors specifically consider the development of quantum mechanics (QM) approaches for studying large molecular systems pertinent to biology, focusing on protein-ligand docking, protein-ligand binding affinities and ligand strain on binding.
Although computation of binding energies remains a challenging and evolving area, current QM methods can underpin improved docking approaches and offer detailed insights into ligand strain and into the nature and relative strengths of complex active site interactions. The authors envisage that QM will become an increasingly routine and valued tool of the computational medicinal chemist.
计算化学已成为基于结构的药物设计中不可或缺且极具价值的一部分。然而,许多配体和活性位点的化学复杂性对用于描述这些系统的经验势的准确性提出了挑战。因此,人们越来越有兴趣利用电子结构方法来解决蛋白质-配体识别中的问题。
在这篇综述中,作者讨论了量子化学方法在建模蛋白质-配体相互作用方面的最新进展和应用。作者特别考虑了开发量子力学(QM)方法来研究与生物学相关的大型分子系统,重点是蛋白质-配体对接、蛋白质-配体结合亲和力和配体结合应变。
尽管结合能的计算仍然是一个具有挑战性和不断发展的领域,但目前的 QM 方法可以为改进的对接方法提供支持,并深入了解配体应变以及复杂活性位点相互作用的性质和相对强度。作者设想,QM 将成为计算药物化学家越来越常规和有价值的工具。