López-López José Antonio, Marín-Martínez Fulgencio, Sánchez-Meca Julio, Van den Noortgate Wim, Viechtbauer Wolfgang
Dept. Basic Psychology & Methodology, University of Murcia, Spain.
University of Leuven, Belgium.
Br J Math Stat Psychol. 2014 Feb;67(1):30-48. doi: 10.1111/bmsp.12002. Epub 2013 Jan 8.
Several methods are available to estimate the total and residual amount of heterogeneity in meta-analysis, leading to different alternatives when estimating the predictive power in mixed-effects meta-regression models using the formula proposed by Raudenbush (1994, 2009). In this paper, a simulation study was conducted to compare the performance of seven estimators of these parameters under various realistic scenarios in psychology and related fields. Our results suggest that the number of studies (k) exerts the most important influence on the accuracy of the results, and that precise estimates of the heterogeneity variances and the model predictive power can only be expected with at least 20 and 40 studies, respectively. Increases in the average within-study sample size (N¯) also improved the results for all estimators. Some differences among the accuracy of the estimators were observed, especially under adverse (small k and N¯) conditions, while the results for the different methods tended to convergence for more optimal scenarios.
在荟萃分析中,有几种方法可用于估计异质性的总量和剩余量,这导致在使用Raudenbush(1994年,2009年)提出的公式估计混合效应荟萃回归模型中的预测能力时会有不同的选择。在本文中,我们进行了一项模拟研究,以比较在心理学及相关领域的各种现实场景下,这七个参数估计量的性能。我们的结果表明,研究数量(k)对结果的准确性影响最大,并且只有分别至少有20项和40项研究时,才能期望得到异质性方差和模型预测能力的精确估计。研究内平均样本量(N¯)的增加也改善了所有估计量的结果。我们观察到估计量在准确性上存在一些差异,特别是在不利条件下(k和N¯较小),而在更理想的场景下,不同方法的结果趋于收敛。