Suppr超能文献

原核生物基因组中细胞外酶基因的微观多样性。

Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes.

机构信息

Department of Ecology and Evolutionary Biology, University of California Irvine, CA 92697, USA.

出版信息

ISME J. 2013 Jun;7(6):1187-99. doi: 10.1038/ismej.2012.176. Epub 2013 Jan 10.

Abstract

Understanding the relationship between prokaryotic traits and phylogeny is important for predicting and modeling ecological processes. Microbial extracellular enzymes have a pivotal role in nutrient cycling and the decomposition of organic matter, yet little is known about the phylogenetic distribution of genes encoding these enzymes. In this study, we analyzed 3058 annotated prokaryotic genomes to determine which taxa have the genetic potential to produce alkaline phosphatase, chitinase and β-N-acetyl-glucosaminidase enzymes. We then evaluated the relationship between the genetic potential for enzyme production and 16S rRNA phylogeny using the consenTRAIT algorithm, which calculated the phylogenetic depth and corresponding 16S rRNA sequence identity of clades of potential enzyme producers. Nearly half (49.2%) of the genomes analyzed were found to be capable of extracellular enzyme production, and these were non-randomly distributed across most prokaryotic phyla. On average, clades of potential enzyme-producing organisms had a maximum phylogenetic depth of 0.008004-0.009780, though individual clades varied broadly in both size and depth. These values correspond to a minimum 16S rRNA sequence identity of 98.04-98.40%. The distribution pattern we found is an indication of microdiversity, the occurrence of ecologically or physiologically distinct populations within phylogenetically related groups. Additionally, we found positive correlations among the genes encoding different extracellular enzymes. Our results suggest that the capacity to produce extracellular enzymes varies at relatively fine-scale phylogenetic resolution. This variation is consistent with other traits that require a small number of genes and provides insight into the relationship between taxonomy and traits that may be useful for predicting ecological function.

摘要

理解原核生物特征与系统发育之间的关系对于预测和模拟生态过程至关重要。微生物胞外酶在营养循环和有机物质分解中起着关键作用,但对于编码这些酶的基因的系统发育分布知之甚少。在这项研究中,我们分析了 3058 个注释的原核基因组,以确定哪些分类单元具有产生碱性磷酸酶、几丁质酶和β-N-乙酰-葡萄糖胺酶的遗传潜力。然后,我们使用 consenTRAIT 算法评估了酶产生的遗传潜力与 16S rRNA 系统发育之间的关系,该算法计算了潜在酶产生物的进化枝的进化深度和相应的 16S rRNA 序列同一性。分析的基因组中有近一半(49.2%)能够进行胞外酶生产,这些基因组在大多数原核生物门中是非随机分布的。平均而言,潜在产酶生物的进化枝的最大进化深度为 0.008004-0.009780,但个别进化枝在大小和深度上都有很大的差异。这些值对应于最小的 16S rRNA 序列同一性为 98.04-98.40%。我们发现的分布模式表明存在微观多样性,即在系统发育相关的群体中存在生态或生理上不同的种群。此外,我们发现不同胞外酶编码基因之间存在正相关。我们的结果表明,产生胞外酶的能力在相对精细的系统发育分辨率上有所不同。这种变化与需要少数基因的其他特征一致,并为预测生态功能的分类学和特征之间的关系提供了见解。

相似文献

1
Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes.
ISME J. 2013 Jun;7(6):1187-99. doi: 10.1038/ismej.2012.176. Epub 2013 Jan 10.
2
Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem.
Microbiome. 2018 Feb 26;6(1):41. doi: 10.1186/s40168-018-0420-9.
3
Coastal Transient Niches Shape the Microdiversity Pattern of a Bacterioplankton Population with Reduced Genomes.
mBio. 2022 Aug 30;13(4):e0057122. doi: 10.1128/mbio.00571-22. Epub 2022 Jul 26.
4
Microbial Diversity Biased Estimation Caused by Intragenomic Heterogeneity and Interspecific Conservation of 16S rRNA Genes.
Appl Environ Microbiol. 2023 May 31;89(5):e0210822. doi: 10.1128/aem.02108-22. Epub 2023 Apr 27.
5
The Archaeal Transcription Termination Factor aCPSF1 is a Robust Phylogenetic Marker for Archaeal Taxonomy.
Microbiol Spectr. 2021 Dec 22;9(3):e0153921. doi: 10.1128/spectrum.01539-21. Epub 2021 Dec 8.
7
Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity.
Appl Environ Microbiol. 2013 Oct;79(19):5962-9. doi: 10.1128/AEM.01282-13. Epub 2013 Jul 19.
8
Phylogenetic conservatism of functional traits in microorganisms.
ISME J. 2013 Apr;7(4):830-8. doi: 10.1038/ismej.2012.160. Epub 2012 Dec 13.
9
Investigation of the microbial ecology of intertidal hot springs by using diversity analysis of 16S rRNA and chitinase genes.
Appl Environ Microbiol. 2005 May;71(5):2771-6. doi: 10.1128/AEM.71.5.2771-2776.2005.
10
Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern.
Environ Microbiol. 2002 Jun;4(6):349-60. doi: 10.1046/j.1462-2920.2002.00306.x.

引用本文的文献

2
Bacteria face trade-offs in the decomposition of complex biopolymers.
PLoS Comput Biol. 2024 Aug 8;20(8):e1012320. doi: 10.1371/journal.pcbi.1012320. eCollection 2024 Aug.
3
Short-term dietary fiber interventions produce consistent gut microbiome responses across studies.
mSystems. 2024 Jun 18;9(6):e0013324. doi: 10.1128/msystems.00133-24. Epub 2024 May 14.
4
clade and functional distribution with simulated climate change.
Microbiol Spectr. 2024 May 2;12(5):e0023624. doi: 10.1128/spectrum.00236-24. Epub 2024 Apr 4.
5
Root microbiota confers rice resistance to aluminium toxicity and phosphorus deficiency in acidic soils.
Nat Food. 2023 Oct;4(10):912-924. doi: 10.1038/s43016-023-00848-0. Epub 2023 Oct 2.
6
Short-term dietary fiber interventions produce consistent gut microbiome responses across studies.
Res Sq. 2023 Aug 25:rs.3.rs-3283675. doi: 10.21203/rs.3.rs-3283675/v1.

本文引用的文献

1
Role of the phosphatase PhoX in the phosphorus metabolism of the marine bacterium Ruegeria pomeroyi DSS-3.
Environ Microbiol Rep. 2011 Oct;3(5):535-42. doi: 10.1111/j.1758-2229.2011.00253.x. Epub 2011 Apr 4.
2
Phylogenetic conservatism of functional traits in microorganisms.
ISME J. 2013 Apr;7(4):830-8. doi: 10.1038/ismej.2012.160. Epub 2012 Dec 13.
3
A trait-based approach for modelling microbial litter decomposition.
Ecol Lett. 2012 Sep;15(9):1058-70. doi: 10.1111/j.1461-0248.2012.01807.x. Epub 2012 May 30.
4
Ecological significance of microdiversity: coexistence among casing soil bacterial strains through allocation of nutritional resource.
Indian J Microbiol. 2011 Jan;51(1):8-13. doi: 10.1007/s12088-011-0068-7. Epub 2011 Jan 26.
5
The Fibrobacteres: an important phylum of cellulose-degrading bacteria.
Microb Ecol. 2012 Feb;63(2):267-81. doi: 10.1007/s00248-011-9998-1. Epub 2012 Jan 3.
7
Fine-scale distribution patterns of Synechococcus ecological diversity in microbial mats of Mushroom Spring, Yellowstone National Park.
Appl Environ Microbiol. 2011 Nov;77(21):7689-97. doi: 10.1128/AEM.05927-11. Epub 2011 Sep 2.
8
Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches.
FEMS Microbiol Rev. 2011 Sep;35(5):957-76. doi: 10.1111/j.1574-6976.2011.00292.x. Epub 2011 Jul 29.
9
Harnessing the power of microbial genomics for exploring exceptions and shifting perceptions.
Front Microbiol. 2011 Jan 4;1:146. doi: 10.3389/fmicb.2010.00146. eCollection 2010.
10
Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7200-5. doi: 10.1073/pnas.1015622108. Epub 2011 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验