Suppr超能文献

通过全局最优耦合曲面演化的颈动脉多区域三维 MRI 分割。

3-D carotid multi-region MRI segmentation by globally optimal evolution of coupled surfaces.

机构信息

Robarts Research Institute, Western University, London ON, N6A 5K8 Canada.

出版信息

IEEE Trans Med Imaging. 2013 Apr;32(4):770-85. doi: 10.1109/TMI.2013.2237784. Epub 2013 Jan 4.

Abstract

In this paper, we propose a novel global optimization based 3-D multi-region segmentation algorithm for T1-weighted black-blood carotid magnetic resonance (MR) images. The proposed algorithm partitions a 3-D carotid MR image into three regions: wall, lumen, and background. The algorithm performs such partitioning by simultaneously evolving two coupled 3-D surfaces of carotid artery adventitia boundary (AB) and lumen-intima boundary (LIB) while preserving their anatomical inter-surface consistency such that the LIB is always located within the AB. In particular, we show that the proposed algorithm results in a fully time implicit scheme that propagates the two linearly ordered surfaces of the AB and LIB to their globally optimal positions during each discrete time frame by convex relaxation. In this regard, we introduce the continuous max-flow model and prove its duality/equivalence to the convex relaxed optimization problem with respect to each evolution step. We then propose a fully parallelized continuous max-flow-based algorithm, which can be readily implemented on a GPU to achieve high computational efficiency. Extensive experiments, with four users using 12 3T MR and 26 1.5T MR images, demonstrate that the proposed algorithm yields high accuracy and low operator variability in computing vessel wall volume. In addition, we show the algorithm outperforms previous methods in terms of high computational efficiency and robustness with fewer user interactions.

摘要

在本文中,我们提出了一种新颖的基于全局优化的 3D 多区域分割算法,用于 T1 加权黑血颈动脉磁共振(MR)图像。所提出的算法将 3D 颈动脉 MR 图像分割为三个区域:壁、管腔和背景。该算法通过同时演化颈动脉外膜边界(AB)和管腔内膜边界(LIB)的两个耦合的 3D 表面来执行这种分割,同时保持它们的解剖学界面一致性,使得 LIB 始终位于 AB 内。特别是,我们表明,所提出的算法导致了一个完全时间隐式方案,该方案通过凸松弛在每个离散时间帧中传播 AB 和 LIB 的两个线性有序表面到它们的全局最优位置。在这方面,我们引入了连续最大流模型,并证明了其对偶性/等价性,相对于每个演化步骤的凸松弛优化问题。然后,我们提出了一种完全并行的基于连续最大流的算法,该算法可以很容易地在 GPU 上实现,以实现高计算效率。通过四个用户使用 12 个 3T MR 和 26 个 1.5T MR 图像进行的广泛实验表明,该算法在计算血管壁体积方面具有高精度和低操作者可变性。此外,我们表明,该算法在计算效率和鲁棒性方面优于以前的方法,并且用户交互更少。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验