Suppr超能文献

形状复合体:连续最大流医学图像分割中标签排序与星凸性约束的交集

Shape complexes: the intersection of label orderings and star convexity constraints in continuous max-flow medical image segmentation.

作者信息

Baxter John S H, Inoue Jiro, Drangova Maria, Peters Terry M

机构信息

Western University, Robarts Research Institute, 1151 Richmond Street N., London, Ontario N6A 5B7, Canada; Western University, Biomedical Engineering Graduate Program, 1151 Richmond Street N., London, Ontario N6A 5B7, Canada.

Western University , Robarts Research Institute, 1151 Richmond Street N., London, Ontario N6A 5B7, Canada.

出版信息

J Med Imaging (Bellingham). 2016 Oct;3(4):044005. doi: 10.1117/1.JMI.3.4.044005. Epub 2016 Dec 20.

Abstract

Optimization-based segmentation approaches deriving from discrete graph-cuts and continuous max-flow have become increasingly nuanced, allowing for topological and geometric constraints on the resulting segmentation while retaining global optimality. However, these two considerations, topological and geometric, have yet to be combined in a unified manner. The concept of "shape complexes," which combine geodesic star convexity with extendable continuous max-flow solvers, is presented. These shape complexes allow more complicated shapes to be created through the use of multiple labels and super-labels, with geodesic star convexity governed by a topological ordering. These problems can be optimized using extendable continuous max-flow solvers. Previous approaches required computationally expensive coordinate system warping, which are ill-defined and ambiguous in the general case. These shape complexes are demonstrated in a set of synthetic images as well as vessel segmentation in ultrasound, valve segmentation in ultrasound, and atrial wall segmentation from contrast-enhanced CT. Shape complexes represent an extendable tool alongside other continuous max-flow methods that may be suitable for a wide range of medical image segmentation problems.

摘要

源自离散图割和连续最大流的基于优化的分割方法已变得越来越细致入微,在保持全局最优性的同时,允许对所得分割结果施加拓扑和几何约束。然而,拓扑和几何这两个考量因素尚未以统一的方式结合起来。本文提出了“形状复合体”的概念,它将测地星凸性与可扩展的连续最大流求解器相结合。这些形状复合体允许通过使用多个标签和超标签来创建更复杂的形状,其测地星凸性由拓扑排序控制。这些问题可以使用可扩展的连续最大流求解器进行优化。先前的方法需要计算成本高昂的坐标系扭曲,而在一般情况下,这种扭曲定义不明确且含糊不清。这些形状复合体在一组合成图像以及超声血管分割、超声瓣膜分割和对比增强CT心房壁分割中得到了验证。形状复合体是一种可扩展的工具,与其他连续最大流方法一起,可能适用于广泛的医学图像分割问题。

相似文献

2
Geodesic Models With Convexity Shape Prior.具有凸形状先验的测地模型。
IEEE Trans Pattern Anal Mach Intell. 2023 Jul;45(7):8433-8452. doi: 10.1109/TPAMI.2022.3225192. Epub 2023 Jun 5.
3
Optimization-based interactive segmentation interface for multiregion problems.用于多区域问题的基于优化的交互式分割界面。
J Med Imaging (Bellingham). 2016 Apr;3(2):024003. doi: 10.1117/1.JMI.3.2.024003. Epub 2016 Jun 14.
5
Convexity Shape Prior for Binary Segmentation.凸形状先验的二值分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Feb;39(2):258-271. doi: 10.1109/TPAMI.2016.2547399.
9
Consistent Estimation of the Max-Flow Problem: Towards Unsupervised Image Segmentation.最大流问题的一致估计:迈向无监督图像分割。
IEEE Trans Pattern Anal Mach Intell. 2022 May;44(5):2346-2357. doi: 10.1109/TPAMI.2020.3039745. Epub 2022 Apr 1.

本文引用的文献

3
Interactive-cut: Real-time feedback segmentation for translational research.交互式切割:用于转化研究的实时反馈分割
Comput Med Imaging Graph. 2014 Jun;38(4):285-95. doi: 10.1016/j.compmedimag.2014.01.006. Epub 2014 Feb 11.
7
Statistical shape models for 3D medical image segmentation: a review.用于三维医学图像分割的统计形状模型:综述
Med Image Anal. 2009 Aug;13(4):543-63. doi: 10.1016/j.media.2009.05.004. Epub 2009 May 27.
10
Shape-based averaging.基于形状的平均法。
IEEE Trans Image Process. 2007 Jan;16(1):153-61. doi: 10.1109/tip.2006.884936.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验