Department of Chemical Engineering, Imperial College London , South Kensington Campus, London SW7 2AZ, United Kingdom.
Departamento de Ingeniería Química, Universidad de Concepción POB 160 - C, Correo 3, Concepción, Chile.
Langmuir. 2017 Oct 24;33(42):11518-11529. doi: 10.1021/acs.langmuir.7b00976. Epub 2017 Jun 28.
The statistical associating fluid theory of variable range employing a Mie potential (SAFT-VR-Mie) proposed by Lafitte et al. (J. Chem Phys. 2013, 139, 154504) is one of the latest versions of the SAFT family. This particular version has been shown to have a remarkable capability to connect experimental determinations, theoretical calculations, and molecular simulations results. However, the theoretical development restricts the model to chains of beads connected in a linear fashion. In this work, the capabilities of the SAFT-VR Mie equation of state for modeling phase equilibria are extended for the case of planar ring compounds. This modification proposed replaces the Helmholtz energy of chain formation by an empirical contribution based on a parallelism to the second-order thermodynamic perturbation theory for hard sphere trimers. The proposed expression is given in terms of an extra parameter, χ, that depends on the number of beads, m, and the geometry of the ring. The model is used to describe the phase equilibrium for planar ring compounds formed of Mie isotropic segments for the cases of m equals to 3, 4, 5 (two configurations), and 7 (two configurations). The resulting molecular model is further parametrized, invoking a corresponding states principle resulting in sets of parameters that can be used indistinctively in theoretical calculations or in molecular simulations without any further refinements. The extent and performance of the methodology has been exemplified by predicting the phase equilibria and vapor pressure curves for aromatic hydrocarbons (benzene, hexafluorobenzene, toluene), heterocyclic molecules (2,5-dimethylfuran, sulfolane, tetrahydro-2H-pyran, tetrahydrofuran), and polycyclic aromatic hydrocarbons (naphthalene, pyrene, anthracene, pentacene, and coronene). An important aspect of the theory is that the parameters of the model can be used directly in molecular dynamics (MD) simulations to calculate equilibrium phase properties and interfacial tensions with an accuracy that rivals other coarse grained and united atom models, for example, liquid densities, are predicted, with a maximum absolute average deviation of 3% from both the theory and the MD simulations, while the interfacial tension is predicted, with a maximum absolute average of 8%. The extension to mixtures is exemplified by considering a binary system of hexane (chain fluid) and tetrahydro-2H-pyran (ring fluid).
拉菲特等人提出的采用 Mie 势的变程统计关联流体理论(SAFT-VR-Mie)是 SAFT 家族的最新版本之一。该版本具有将实验测定、理论计算和分子模拟结果连接起来的出色能力。然而,理论发展将模型限制为以线性方式连接的珠链。在这项工作中,将 SAFT-VR Mie 状态方程用于模拟相平衡的能力扩展到平面环化合物的情况。这种修改用基于硬球三聚体二级热力学微扰理论的平行性的经验贡献替代了链形成的亥姆霍兹自由能。所提出的表达式用一个额外的参数 χ 表示,该参数取决于珠数 m 和环的几何形状。该模型用于描述由 Mie 各向同性段形成的平面环化合物的相平衡,对于 m 等于 3、4、5(两种构型)和 7(两种构型)的情况。进一步对所得分子模型进行参数化,调用对应状态原理,得到可以在理论计算或分子模拟中不加任何进一步改进而不加区分地使用的参数集。该方法的范围和性能通过预测芳香烃(苯、六氟苯、甲苯)、杂环分子(2,5-二甲基呋喃、环丁砜、四氢-2H-吡喃、四氢呋喃)和多环芳烃(萘、芘、蒽、并五苯和蒄)的相平衡和蒸气压曲线来举例说明。该理论的一个重要方面是,模型的参数可以直接用于分子动力学 (MD) 模拟,以计算平衡相性质和界面张力,其精度可与其他粗粒化和联合原子模型相媲美,例如,预测液体密度,与理论和 MD 模拟的最大绝对平均偏差为 3%,而界面张力的预测,最大绝对平均偏差为 8%。通过考虑己烷(链流体)和四氢-2H-吡喃(环流体)的二元体系来举例说明混合物的扩展。