Suppr超能文献

一种用于图像分割的多目标几何可变形模型

A Multiple Object Geometric Deformable Model for Image Segmentation.

作者信息

Bogovic John A, Prince Jerry L, Bazin Pierre-Louis

机构信息

Johns Hopkins University, Baltimore, MD, USA.

出版信息

Comput Vis Image Underst. 2013 Feb 1;117(2):145-157. doi: 10.1016/j.cviu.2012.10.006.

Abstract

Deformable models are widely used for image segmentation, most commonly to find single objects within an image. Although several methods have been proposed to segment multiple objects using deformable models, substantial limitations in their utility remain. This paper presents a multiple object segmentation method using a novel and efficient object representation for both two and three dimensions. The new framework guarantees object relationships and topology, prevents overlaps and gaps, enables boundary-specific speeds, and has a computationally efficient evolution scheme that is largely independent of the number of objects. Maintaining object relationships and straightforward use of object-specific and boundary-specific smoothing and advection forces enables the segmentation of objects with multiple compartments, a critical capability in the parcellation of organs in medical imaging. Comparing the new framework with previous approaches shows its superior performance and scalability.

摘要

可变形模型被广泛用于图像分割,最常见的是在图像中找到单个物体。尽管已经提出了几种使用可变形模型分割多个物体的方法,但其效用仍存在重大局限性。本文提出了一种用于二维和三维的多物体分割方法,该方法使用了一种新颖且高效的物体表示。新框架保证了物体关系和拓扑结构,防止了重叠和间隙,实现了边界特定速度,并且具有计算效率高的演化方案,该方案在很大程度上与物体数量无关。维持物体关系以及直接使用特定于物体和边界的平滑和对流力能够对具有多个隔室的物体进行分割,这是医学成像中器官分割的一项关键能力。将新框架与先前的方法进行比较显示了其卓越的性能和可扩展性。

相似文献

1
A Multiple Object Geometric Deformable Model for Image Segmentation.
Comput Vis Image Underst. 2013 Feb 1;117(2):145-157. doi: 10.1016/j.cviu.2012.10.006.
2
A Multiple Geometric Deformable Model Framework for Homeomorphic 3D Medical Image Segmentation.
Conf Comput Vis Pattern Recognit Workshops. 2008 Jul 15;2008:1-7. doi: 10.1109/CVPRW.2008.4563013.
3
A Multi-Compartment Segmentation Framework With Homeomorphic Level Sets.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008:1-6. doi: 10.1109/CVPR.2008.4587475.
4
Multiple-object geometric deformable model for segmentation of macular OCT.
Biomed Opt Express. 2014 Mar 4;5(4):1062-74. doi: 10.1364/BOE.5.001062. eCollection 2014 Apr 1.
5
Multi-object segmentation framework using deformable models for medical imaging analysis.
Med Biol Eng Comput. 2016 Aug;54(8):1181-92. doi: 10.1007/s11517-015-1387-3. Epub 2015 Sep 21.
6
Deformable M-Reps for 3D Medical Image Segmentation.
Int J Comput Vis. 2003 Nov 1;55(2-3):85-106. doi: 10.1023/a:1026313132218.
9
A hybrid framework for 3D medical image segmentation.
Med Image Anal. 2005 Dec;9(6):547-65. doi: 10.1016/j.media.2005.04.004.
10
SEGMENTATION OF 3D DEFORMABLE OBJECTS WITH LEVEL SET BASED PRIOR MODELS.
Proc IEEE Int Symp Biomed Imaging. 2004 Apr 15;1:85-88. doi: 10.1109/ISBI.2004.1398480.

引用本文的文献

1
Assessing quantitative MRI techniques using multimodal comparisons.
PLoS One. 2025 Jul 24;20(7):e0327828. doi: 10.1371/journal.pone.0327828. eCollection 2025.
2
Cost-efficient and glaucoma-specifical model by exploiting normal OCT images with knowledge transfer learning.
Biomed Opt Express. 2023 Nov 3;14(12):6151-6171. doi: 10.1364/BOE.500917. eCollection 2023 Dec 1.
3
A selection and targeting framework of cortical locations for line-scanning fMRI.
Hum Brain Mapp. 2023 Nov;44(16):5471-5484. doi: 10.1002/hbm.26459. Epub 2023 Aug 22.
4
Fully Automatic Liver and Tumor Segmentation from CT Image Using an AIM-Unet.
Bioengineering (Basel). 2023 Feb 6;10(2):215. doi: 10.3390/bioengineering10020215.
5
CerebNet: A fast and reliable deep-learning pipeline for detailed cerebellum sub-segmentation.
Neuroimage. 2022 Dec 1;264:119703. doi: 10.1016/j.neuroimage.2022.119703. Epub 2022 Oct 27.
6
Automatic cerebellum anatomical parcellation using U-Net with locally constrained optimization.
Neuroimage. 2020 Sep;218:116819. doi: 10.1016/j.neuroimage.2020.116819. Epub 2020 May 11.
7
A flexible workflow for simulating transcranial electric stimulation in healthy and lesioned brains.
PLoS One. 2020 May 14;15(5):e0228119. doi: 10.1371/journal.pone.0228119. eCollection 2020.
8
MP2RAGEME: T , T , and QSM mapping in one sequence at 7 tesla.
Hum Brain Mapp. 2019 Apr 15;40(6):1786-1798. doi: 10.1002/hbm.24490. Epub 2018 Dec 13.
9
Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images.
Neuroimage. 2018 Dec;183:150-172. doi: 10.1016/j.neuroimage.2018.08.003. Epub 2018 Aug 9.
10
Nighres: processing tools for high-resolution neuroimaging.
Gigascience. 2018 Jul 1;7(7). doi: 10.1093/gigascience/giy082.

本文引用的文献

1
A Multi-Compartment Segmentation Framework With Homeomorphic Level Sets.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008:1-6. doi: 10.1109/CVPR.2008.4587475.
2
A Multiple Geometric Deformable Model Framework for Homeomorphic 3D Medical Image Segmentation.
Conf Comput Vis Pattern Recognit Workshops. 2008 Jul 15;2008:1-7. doi: 10.1109/CVPRW.2008.4563013.
3
AUTOMATED RELIABLE LABELING OF THE CORTICAL SURFACE.
Proc IEEE Int Symp Biomed Imaging. 2008 May 14;2008:440. doi: 10.1109/isbi.2008.4541027.
4
Statistical Fusion of Surface Labels Provided by Multiple Raters.
Proc SPIE Int Soc Opt Eng. 2010 Mar 1;7623. doi: 10.1117/12.844214.
5
Coupled nonparametric shape and moment-based intershape pose priors for multiple basal ganglia structure segmentation.
IEEE Trans Med Imaging. 2010 Dec;29(12):1959-78. doi: 10.1109/TMI.2010.2053554.
6
Coupled minimum-cost flow cell tracking.
Inf Process Med Imaging. 2009;21:374-85. doi: 10.1007/978-3-642-02498-6_31.
7
Homeomorphic brain image segmentation with topological and statistical atlases.
Med Image Anal. 2008 Oct;12(5):616-25. doi: 10.1016/j.media.2008.06.008. Epub 2008 Jun 20.
8
Snakes, shapes, and gradient vector flow.
IEEE Trans Image Process. 1998;7(3):359-69. doi: 10.1109/83.661186.
9
Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):86-93. doi: 10.1007/978-3-540-75757-3_11.
10
Digital homeomorphisms in deformable registration.
Inf Process Med Imaging. 2007;20:211-22. doi: 10.1007/978-3-540-73273-0_18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验