Fan Xian, Bazin Pierre-Louis, Bogovic John, Bai Ying, Prince Jerry L
Conf Comput Vis Pattern Recognit Workshops. 2008 Jul 15;2008:1-7. doi: 10.1109/CVPRW.2008.4563013.
This paper presents a 3D segmentation framework for multiple objects or compartments embedded as level sets. Thanks to a compact representation of the level set functions of multiple objects, the framework guarantees no overlap and vacuum, and leads to a computationally efficient evolution scheme largely independent of the number of objects. Appropriate topology constraints ensure not only that the topology of each object remains the same, but that the relationship between objects is also maintained. The decomposition of objects makes the framework specifically attractive to the segmentation of related anatomical regions or the parcellation of an organ, where relationships must be maintained and different evolution forces are needed on different parts of the objects interface. Examples of 3D whole brain segmentation and thalamic parcellation demonstrate the potential of our method for such segmentation tasks.
本文提出了一种用于嵌入水平集的多个对象或区域的三维分割框架。由于多个对象的水平集函数的紧凑表示,该框架保证无重叠和空洞,并导致一种计算效率高的演化方案,很大程度上独立于对象数量。适当的拓扑约束不仅确保每个对象的拓扑保持不变,而且确保对象之间的关系也得以维持。对象的分解使得该框架对于相关解剖区域的分割或器官的划分特别有吸引力,在这些任务中必须维持关系,并且在对象界面的不同部分需要不同的演化力。三维全脑分割和丘脑划分的示例证明了我们的方法在此类分割任务中的潜力。