Suppr超能文献

一种用于同胚三维医学图像分割的多重几何可变形模型框架。

A Multiple Geometric Deformable Model Framework for Homeomorphic 3D Medical Image Segmentation.

作者信息

Fan Xian, Bazin Pierre-Louis, Bogovic John, Bai Ying, Prince Jerry L

出版信息

Conf Comput Vis Pattern Recognit Workshops. 2008 Jul 15;2008:1-7. doi: 10.1109/CVPRW.2008.4563013.

Abstract

This paper presents a 3D segmentation framework for multiple objects or compartments embedded as level sets. Thanks to a compact representation of the level set functions of multiple objects, the framework guarantees no overlap and vacuum, and leads to a computationally efficient evolution scheme largely independent of the number of objects. Appropriate topology constraints ensure not only that the topology of each object remains the same, but that the relationship between objects is also maintained. The decomposition of objects makes the framework specifically attractive to the segmentation of related anatomical regions or the parcellation of an organ, where relationships must be maintained and different evolution forces are needed on different parts of the objects interface. Examples of 3D whole brain segmentation and thalamic parcellation demonstrate the potential of our method for such segmentation tasks.

摘要

本文提出了一种用于嵌入水平集的多个对象或区域的三维分割框架。由于多个对象的水平集函数的紧凑表示,该框架保证无重叠和空洞,并导致一种计算效率高的演化方案,很大程度上独立于对象数量。适当的拓扑约束不仅确保每个对象的拓扑保持不变,而且确保对象之间的关系也得以维持。对象的分解使得该框架对于相关解剖区域的分割或器官的划分特别有吸引力,在这些任务中必须维持关系,并且在对象界面的不同部分需要不同的演化力。三维全脑分割和丘脑划分的示例证明了我们的方法在此类分割任务中的潜力。

相似文献

2
A Multiple Object Geometric Deformable Model for Image Segmentation.一种用于图像分割的多目标几何可变形模型
Comput Vis Image Underst. 2013 Feb 1;117(2):145-157. doi: 10.1016/j.cviu.2012.10.006.
3
A Multi-Compartment Segmentation Framework With Homeomorphic Level Sets.一种具有同胚水平集的多隔室分割框架。
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008:1-6. doi: 10.1109/CVPR.2008.4587475.
5
SEGMENTATION OF 3D DEFORMABLE OBJECTS WITH LEVEL SET BASED PRIOR MODELS.基于水平集先验模型的三维可变形物体分割
Proc IEEE Int Symp Biomed Imaging. 2004 Apr 15;1:85-88. doi: 10.1109/ISBI.2004.1398480.
7
Deformable M-Reps for 3D Medical Image Segmentation.用于3D医学图像分割的可变形M-Reps
Int J Comput Vis. 2003 Nov 1;55(2-3):85-106. doi: 10.1023/a:1026313132218.
10
Joint Prior Models of Neighboring Objects for 3D Image Segmentation.用于3D图像分割的相邻对象联合先验模型
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2004 Jun 27;1:I314-I319. doi: 10.1109/CVPR.2004.1315048.

本文引用的文献

1
A Multi-Compartment Segmentation Framework With Homeomorphic Level Sets.一种具有同胚水平集的多隔室分割框架。
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2008:1-6. doi: 10.1109/CVPR.2008.4587475.
2
Snakes, shapes, and gradient vector flow.蛇形、形状与梯度向量流。
IEEE Trans Image Process. 1998;7(3):359-69. doi: 10.1109/83.661186.
3
Active contours without edges.无边缘活动轮廓。
IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.
4
Statistical and topological atlas based brain image segmentation.基于统计和拓扑图谱的脑图像分割
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):94-101. doi: 10.1007/978-3-540-75757-3_12.
6
Digital homeomorphisms in deformable registration.可变形配准中的数字同胚
Inf Process Med Imaging. 2007;20:211-22. doi: 10.1007/978-3-540-73273-0_18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验