Suppr超能文献

人类沟通动态中的呼叫模式。

Calling patterns in human communication dynamics.

机构信息

School of Business, East China University of Science and Technology, Shanghai 200237, China.

出版信息

Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1600-5. doi: 10.1073/pnas.1220433110. Epub 2013 Jan 14.

Abstract

Modern technologies not only provide a variety of communication modes (e.g., texting, cell phone conversation, and online instant messaging), but also detailed electronic traces of these communications between individuals. These electronic traces indicate that the interactions occur in temporal bursts. Here, we study intercall duration of communications of the 100,000 most active cell phone users of a Chinese mobile phone operator. We confirm that the intercall durations follow a power-law distribution with an exponential cutoff at the population level but find differences when focusing on individual users. We apply statistical tests at the individual level and find that the intercall durations follow a power-law distribution for only 3,460 individuals (3.46%). The intercall durations for the majority (73.34%) follow a Weibull distribution. We quantify individual users using three measures: out-degree, percentage of outgoing calls, and communication diversity. We find that the cell phone users with a power-law duration distribution fall into three anomalous clusters: robot-based callers, telecom fraud, and telephone sales. This information is of interest to both academics and practitioners, mobile telecom operators in particular. In contrast, the individual users with a Weibull duration distribution form the fourth cluster of ordinary cell phone users. We also discover more information about the calling patterns of these four clusters (e.g., the probability that a user will call the c(r)-th most contact and the probability distribution of burst sizes). Our findings may enable a more detailed analysis of the huge body of data contained in the logs of massive users.

摘要

现代技术不仅提供了多种通信模式(例如短信、手机通话和在线即时消息),还为这些个人之间的通信提供了详细的电子痕迹。这些电子痕迹表明,交互是在时间上爆发的。在这里,我们研究了中国一家移动电话运营商的 10 万名最活跃的手机用户之间的通话持续时间。我们确认通话持续时间在人群水平上遵循幂律分布,并且在关注个人用户时存在差异。我们在个人水平上应用统计检验,发现只有 3460 个人(3.46%)的通话持续时间遵循幂律分布。大多数人的通话持续时间(73.34%)遵循威布尔分布。我们使用三个指标对个人用户进行量化:出度、外出电话的百分比和通信多样性。我们发现,具有幂律持续时间分布的手机用户分为三个异常集群:基于机器人的呼叫者、电信欺诈和电话销售。这一信息对学术界和从业者都有兴趣,特别是移动电信运营商。相比之下,具有威布尔持续时间分布的个人用户形成了第四组普通手机用户集群。我们还发现了有关这四个集群呼叫模式的更多信息(例如,用户将呼叫第 c(r)个联系人的概率以及突发大小的概率分布)。我们的研究结果可能会实现对大量用户日志中包含的大量数据的更详细分析。

相似文献

1
Calling patterns in human communication dynamics.人类沟通动态中的呼叫模式。
Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1600-5. doi: 10.1073/pnas.1220433110. Epub 2013 Jan 14.
5
Inferring friendship network structure by using mobile phone data.利用手机数据推断友谊网络结构。
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15274-8. doi: 10.1073/pnas.0900282106. Epub 2009 Aug 17.
7
Temporal understanding of human mobility: A multi-time scale analysis.人类移动性的时间理解:多时间尺度分析。
PLoS One. 2018 Nov 27;13(11):e0207697. doi: 10.1371/journal.pone.0207697. eCollection 2018.
8
Analysis of the communities of an urban mobile phone network.城市移动电话网络社区分析
PLoS One. 2017 Mar 23;12(3):e0174198. doi: 10.1371/journal.pone.0174198. eCollection 2017.

引用本文的文献

3
The distribution of COVID-19 mortality.新型冠状病毒肺炎死亡情况的分布。
Infect Dis Model. 2022 Dec;7(4):856-873. doi: 10.1016/j.idm.2022.11.003. Epub 2022 Nov 19.
8
Dynamics of calling activity to toll-free numbers in China.中国拨打免费电话号码的活动动态。
PLoS One. 2020 Mar 26;15(3):e0230592. doi: 10.1371/journal.pone.0230592. eCollection 2020.
9
Evidence to support common application switching behaviour on smartphones.支持智能手机上常见应用切换行为的证据。
R Soc Open Sci. 2019 Mar 20;6(3):190018. doi: 10.1098/rsos.190018. eCollection 2019 Mar.
10
Characterizing preferred motif choices and distance impacts.描述首选基序选择和距离影响。
PLoS One. 2019 Apr 16;14(4):e0215242. doi: 10.1371/journal.pone.0215242. eCollection 2019.

本文引用的文献

1
Correlated dynamics in egocentric communication networks.自我中心交流网络中的关联动态。
PLoS One. 2012;7(7):e40612. doi: 10.1371/journal.pone.0040612. Epub 2012 Jul 12.
2
Mesoscopic structure and social aspects of human mobility.人类流动的介观结构和社会方面。
PLoS One. 2012;7(5):e37676. doi: 10.1371/journal.pone.0037676. Epub 2012 May 31.
3
4
Path lengths, correlations, and centrality in temporal networks.时间网络中的路径长度、相关性和中心性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 2):016105. doi: 10.1103/PhysRevE.84.016105. Epub 2011 Jul 18.
5
Emergence of bursts and communities in evolving weighted networks.加权网络演化中的突发和社区的涌现。
PLoS One. 2011;6(8):e22687. doi: 10.1371/journal.pone.0022687. Epub 2011 Aug 12.
6
Evidence for a bimodal distribution in human communication.人类交流中存在双峰分布的证据。
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18803-8. doi: 10.1073/pnas.1013140107. Epub 2010 Oct 19.
7
Network diversity and economic development.网络多样性与经济发展。
Science. 2010 May 21;328(5981):1029-31. doi: 10.1126/science.1186605.
8
On universality in human correspondence activity.论人类通信活动中的普遍性。
Science. 2009 Sep 25;325(5948):1696-700. doi: 10.1126/science.1174562.
9
A Poissonian explanation for heavy tails in e-mail communication.电子邮件通信中重尾现象的泊松分布解释。
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18153-8. doi: 10.1073/pnas.0800332105. Epub 2008 Nov 18.
10
Understanding individual human mobility patterns.理解个体的人类移动模式。
Nature. 2008 Jun 5;453(7196):779-82. doi: 10.1038/nature06958.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验