Suppr超能文献

多硫化物化学在钠硫电池和相关体系中的研究——G3X(MP2)和 PCM 计算的计算研究。

Polysulfide chemistry in sodium-sulfur batteries and related systems--a computational study by G3X(MP2) and PCM calculations.

机构信息

Institut für Chemie, Sekr. C2, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.

出版信息

Chemistry. 2013 Feb 25;19(9):3162-76. doi: 10.1002/chem.201203397. Epub 2013 Jan 16.

Abstract

The sodium-sulfur (NAS) battery is a candidate for energy storage and load leveling in power systems, by using the reversible reduction of elemental sulfur by sodium metal to give a liquid mixture of polysulfides (Na(2)S(n)) at approximately 320°C. We investigated a large number of reactions possibly occurring in such sodium polysulfide melts by using density functional calculations at the G3X(MP2)/B3LYP/6-31+G(2df,p) level of theory including polarizable continuum model (PCM) corrections for two polarizable phases, to obtain geometric and, for the first time, thermodynamic data for the liquid sodium-sulfur system. Novel reaction sequences for the electrochemical reduction of elemental sulfur are proposed on the basis of their Gibbs reaction energies. We suggest that the primary reduction product of S(8) is the radical anion S(8)(˙-), which decomposes at the operating temperature of NAS batteries exergonically to the radicals S(2)(˙-) and S(3)(˙-) together with the neutral species S(6) and S(5), respectively. In addition, S(8)(˙-) is predicted to disproportionate exergonically to S(8) and S(8)(2-) followed by the dissociation of the latter into two S(4)(˙-) radical ions. By recombination reactions of these radicals various polysulfide dianions can in principle be formed. However, polysulfide dianions larger than S(4)(2-) are thermally unstable at 320°C and smaller dianions as well as radical monoanions dominate in Na(2)S(n) (n=2-5) melts instead. The reverse reactions are predicted to take place when the NAS battery is charged. We show that ion pairs of the types NaS(2)˙, NaS(n)(-), and Na(2)S(n) can be expected at least for n=2 and 3 in NAS batteries, but are unlikely in aqueous sodium polysulfide except at high concentrations. The structures of such radicals and anions with up to nine sulfur atoms are reported, because they are predicted to play a key role in the electrochemical reduction process. A large number of isomerization, disproportionation, and sulfurization reactions of polysulfide mono- and dianions have been investigated in the gas phase and in a polarizable continuum, and numerous reaction enthalpies as well as Gibbs energies are reported.

摘要

钠-硫(NAS)电池是电力系统储能和负荷平衡的候选者,它利用钠金属还原元素硫生成液态多硫化物(Na(2)S(n))混合物,反应温度约为 320°C。我们使用密度泛函理论在 G3X(MP2)/B3LYP/6-31+G(2df,p)水平上,包括对两个极化相的极化连续模型(PCM)校正,研究了在这种钠多硫化物熔体中可能发生的大量反应,首次获得了液态钠-硫体系的几何和热力学数据。根据吉布斯反应能提出了电化学还原元素硫的新反应序列。我们认为 S(8)的主要还原产物是自由基阴离子 S(8)(˙-),它在 NAS 电池的工作温度下会非热力学地分解为自由基 S(2)(˙-)和 S(3)(˙-),以及中性物质 S(6)和 S(5)。此外,S(8)(˙-)被预测会非热力学地歧化生成 S(8)和 S(8)(2-),随后后者会分解成两个 S(4)(˙-)自由基离子。通过这些自由基的重组反应,原则上可以形成各种多硫化物二阴离子。然而,在 320°C 时,大于 S(4)(2-)的多硫化物二阴离子是热不稳定的,而较小的二阴离子和自由基单阴离子在 Na(2)S(n)(n=2-5)熔体中占主导地位。当 NAS 电池充电时,预测会发生相反的反应。我们表明,在 NAS 电池中,至少可以预期到类型为 NaS(2)˙、NaS(n)(-)和 Na(2)S(n)的离子对,对于 n=2 和 3 而言,但在水溶液中的钠多硫化物中不太可能存在,除非浓度很高。报告了多达 9 个硫原子的此类自由基和阴离子的结构,因为它们被预测在电化学还原过程中发挥关键作用。在气相和极化连续体中,研究了多硫化物单阴离子和二阴离子的大量异构化、歧化和硫化反应,并报告了大量反应焓和吉布斯能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验