Nikiforidis Georgios, van de Sanden M C M, Tsampas Michail N
Dutch Institute for Fundamental Energy Research (DIFFER) De Zaale 20 Eindhoven 5612AJ The Netherlands.
Organic Bioelectronics Lab, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) Saudi Arabia
RSC Adv. 2019 Feb 14;9(10):5649-5673. doi: 10.1039/c8ra08658c. eCollection 2019 Feb 11.
In view of the burgeoning demand for energy storage stemming largely from the growing renewable energy sector, the prospects of high (>300 °C), intermediate (100-200 °C) and room temperature (25-60 °C) battery systems are encouraging. Metal sulfur batteries are an attractive choice since the sulfur cathode is abundant and offers an extremely high theoretical capacity of 1672 mA h g upon complete discharge. Sodium also has high natural abundance and a respectable electrochemical reduction potential (-2.71 V standard hydrogen electrode). Combining these two abundant elements as raw materials in an energy storage context leads to the sodium-sulfur battery (NaS). This review focuses solely on the progress, prospects and challenges of the high and intermediate temperature NaS secondary batteries (HT and IT NaS) as a whole. The already established HT NaS can be further improved in terms of energy density and safety record. The IT NaS takes advantage of the lower operating temperature to lower manufacturing and potentially operating costs whilst creating a safer environment. A thorough technical discussion on the building blocks of these two battery systems is discussed here, including electrolyte, separators, cell configuration, electrochemical reactions that take place under the different operating conditions and ways to monitor and comprehend the physicochemical and electrochemical processes under these temperatures. Furthermore, a brief summary of the work conducted on the room temperature (RT) NaS system is given seeking to couple the knowledge in this field with the one at elevated temperatures. Finally, future perspectives are discussed along with ways to effectively handle the technical challenges presented for this electrochemical energy storage system.
鉴于主要源于不断发展的可再生能源领域对储能的需求迅速增长,高温(>300°C)、中温(100 - 200°C)和室温(25 - 60°C)电池系统的前景令人鼓舞。金属硫电池是一个有吸引力的选择,因为硫阴极储量丰富,在完全放电时提供极高的理论容量,为1672 mA h g。钠也具有高天然丰度和可观的电化学还原电位(相对于标准氢电极 - 2.71 V)。在储能领域将这两种丰富的元素作为原材料结合起来就产生了钠硫电池(NaS)。本综述仅专注于高温和中温钠硫二次电池(HT和IT NaS)整体的进展、前景和挑战。已成熟的HT NaS在能量密度和安全记录方面可以进一步改进。IT NaS利用较低的工作温度来降低制造和潜在的运营成本,同时创造一个更安全的环境。这里讨论了关于这两种电池系统组成部分的全面技术讨论,包括电解质、隔膜、电池配置、在不同操作条件下发生的电化学反应以及监测和理解这些温度下物理化学和电化学过程的方法。此外,还给出了关于室温(RT)NaS系统所做工作的简要总结,旨在将该领域的知识与高温下的知识结合起来。最后,讨论了未来的前景以及有效应对这种电化学储能系统所面临技术挑战的方法。