Suppr超能文献

比较英国两种二次食品环境数据源在社会经济和城乡差距方面的准确性。

Comparing the accuracy of two secondary food environment data sources in the UK across socio-economic and urban/rural divides.

机构信息

UKCRC Centre for Diet and Activity Research, Institute of Public Health, Box 296, Forvie Site, Robinson Way, University of Cambridge, Cambridge CB2 0SR, UK.

出版信息

Int J Health Geogr. 2013 Jan 17;12:2. doi: 10.1186/1476-072X-12-2.

Abstract

BACKGROUND

Interest in the role of food environments in shaping food consumption behaviours has grown in recent years. However, commonly used secondary food environment data sources have not yet been fully evaluated for completeness and systematic biases. This paper assessed the accuracy of UK Points of Interest (POI) data, compared to local council food outlet data for the county of Cambridgeshire.

METHODS

Percentage agreement, positive predictive values (PPVs) and sensitivities were calculated for all food outlets across the study area, by outlet type, and across urban/rural/SES divisions.

RESULTS

Percentage agreement by outlet type (29.7-63.5%) differed significantly to overall percentage agreement (49%), differed significantly in rural areas (43%) compared to urban (52.8%), and by SES quintiles. POI data had an overall PPV of 74.9%, differing significantly for Convenience Stores (57.9%), Specialist Stores (68.3%), and Restaurants (82.6%). POI showed an overall 'moderate' sensitivity, although this varied significantly by outlet type. Whilst sensitivities by urban/rural/SES divides varied significantly from urban and least deprived reference categories, values remained 'moderate'.

CONCLUSIONS

Results suggest POI is a viable alternative to council data, particularly in terms of PPVs, which remain robust across urban/rural and SES divides. Most variation in completeness was by outlet type; lowest levels were for Convenience Stores, which are commonly cited as 'obesogenic'.

摘要

背景

近年来,人们对食品环境在塑造食品消费行为方面的作用越来越感兴趣。然而,常用的二级食品环境数据源尚未得到充分评估,以确定其完整性和系统偏差。本文评估了英国兴趣点(POI)数据的准确性,并将其与剑桥郡地方议会食品网点数据进行了比较。

方法

通过网点类型和城乡/社会经济地位(SES)划分,计算了整个研究区域所有食品网点的总体百分比一致性、阳性预测值(PPV)和敏感性。

结果

网点类型的百分比一致性(29.7-63.5%)与总体百分比一致性(49%)显著不同,在农村地区(43%)与城市地区(52.8%)以及 SES 五分位数显著不同。POI 数据的总体 PPV 为 74.9%,便利店(57.9%)、专卖店(68.3%)和餐厅(82.6%)的 PPV 差异显著。POI 总体上显示出“中等”敏感性,但按网点类型差异显著。虽然城乡和 SES 划分的敏感性与城市和最不贫困的参考类别存在显著差异,但数值仍保持“中等”。

结论

结果表明,POI 是议会数据的一种可行替代方案,尤其是在 PPV 方面,其在城乡和 SES 划分方面仍然稳健。完整性的大部分差异是由网点类型引起的;便利店的水平最低,便利店通常被认为是“致肥胖的”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d56e/3566929/c256734b8485/1476-072X-12-2-1.jpg

相似文献

4
The evolution of local food environments within established neighbourhoods and new developments in Perth, Western Australia.
Health Place. 2019 May;57:204-217. doi: 10.1016/j.healthplace.2019.04.011. Epub 2019 May 16.
6
Recent changes in the Dutch foodscape: socioeconomic and urban-rural differences.
Int J Behav Nutr Phys Act. 2020 Mar 20;17(1):43. doi: 10.1186/s12966-020-00944-5.
7
Field validation of secondary commercial data sources on the retail food outlet environment in the U.S.
Health Place. 2011 Sep;17(5):1122-31. doi: 10.1016/j.healthplace.2011.05.010. Epub 2011 Jun 2.
10
Validation of 3 food outlet databases: completeness and geospatial accuracy in rural and urban food environments.
Am J Epidemiol. 2010 Dec 1;172(11):1324-33. doi: 10.1093/aje/kwq292. Epub 2010 Oct 20.

引用本文的文献

4
Fast food proximity and weight gain in childhood and adolescence: Evidence from Great Britain.
Health Econ. 2024 Mar;33(3):449-465. doi: 10.1002/hec.4770. Epub 2023 Nov 16.
8
Spatial inequalities of retail food stores may determine availability of healthful food choices in a Brazilian metropolis.
Public Health Nutr. 2022 Jul;25(7):1807-1818. doi: 10.1017/S1368980021002706. Epub 2021 Jun 25.
10
Web Data Mining: Validity of Data from Google Earth for Food Retail Evaluation.
J Urban Health. 2021 Apr;98(2):285-295. doi: 10.1007/s11524-020-00495-x. Epub 2020 Nov 23.

本文引用的文献

1
The local food environment and diet: a systematic review.
Health Place. 2012 Sep;18(5):1172-87. doi: 10.1016/j.healthplace.2012.05.006. Epub 2012 May 31.
3
Validation of presence of supermarkets and fast-food outlets in Copenhagen: case study comparison of multiple sources of secondary data.
Public Health Nutr. 2012 Jul;15(7):1228-31. doi: 10.1017/S1368980012000845. Epub 2012 Mar 22.
4
Measuring local food environments: an overview of available methods and measures.
Health Place. 2011 Nov;17(6):1284-93. doi: 10.1016/j.healthplace.2011.08.014. Epub 2011 Sep 3.
5
6
Field validation of secondary commercial data sources on the retail food outlet environment in the U.S.
Health Place. 2011 Sep;17(5):1122-31. doi: 10.1016/j.healthplace.2011.05.010. Epub 2011 Jun 2.
7
Environmental correlates of adiposity in 9-10 year old children: considering home and school neighbourhoods and routes to school.
Soc Sci Med. 2011 May;72(9):1411-9. doi: 10.1016/j.socscimed.2011.02.023. Epub 2011 Mar 8.
8
Local food outlets, weight status, and dietary intake: associations in children aged 9-10 years.
Am J Prev Med. 2011 Apr;40(4):405-10. doi: 10.1016/j.amepre.2010.12.014.
9
Validation of 3 food outlet databases: completeness and geospatial accuracy in rural and urban food environments.
Am J Epidemiol. 2010 Dec 1;172(11):1324-33. doi: 10.1093/aje/kwq292. Epub 2010 Oct 20.
10
Collecting accurate secondary foodscape data. A reflection on the trials and tribulations.
Appetite. 2010 Dec;55(3):522-7. doi: 10.1016/j.appet.2010.08.020. Epub 2010 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验