Suppr超能文献

用于提高骨水泥界面断裂韧性的微纳级氧化镁颗粒。

Micro and nano MgO particles for the improvement of fracture toughness of bone-cement interfaces.

机构信息

Department of Engineering & Physics, University of Central Oklahoma, Edmond, OK 73034, USA.

出版信息

J Biomech. 2013 Mar 15;46(5):1035-9. doi: 10.1016/j.jbiomech.2012.12.006. Epub 2013 Jan 16.

Abstract

The objective of this study was to determine whether inclusion of magnesium oxide (MgO) in micro and nanoparticulate forms in poly methyl methacrylate (PMMA) cement has any influence on the fracture toughness of bone-cement interfaces. An interfacial fracture mechanics technique was used to compare the values of fracture toughness (KIC) among bone-PMMA, bone-PMMA with micro MgO particles and bone-PMMA with nano MgO particles interfaces. This study found that the values of KIC of bone-PMMA with micro MgO particles and bone-PMMA with nano MgO particles interfaces were significantly higher when compared to the values of KIC of the bone-PMMA interface (p<0.0001). Results indicated that the addition of the micro and nano MgO particles to PMMA improved the quality of bone-cement union.

摘要

本研究旨在确定氧化镁(MgO)以微纳米颗粒形式加入聚甲基丙烯酸甲酯(PMMA)骨水泥中是否会影响骨-骨水泥界面的断裂韧性。本研究采用界面断裂力学技术比较了骨-PMMA、骨-PMMA 中添加微米 MgO 颗粒以及骨-PMMA 中添加纳米 MgO 颗粒界面的断裂韧性(KIC)值。结果表明,与骨-PMMA 界面的 KIC 值相比,骨-PMMA 中添加微米 MgO 颗粒和纳米 MgO 颗粒界面的 KIC 值显著更高(p<0.0001)。结果表明,将微纳米 MgO 颗粒添加到 PMMA 中可提高骨-骨水泥结合的质量。

相似文献

1
Micro and nano MgO particles for the improvement of fracture toughness of bone-cement interfaces.
J Biomech. 2013 Mar 15;46(5):1035-9. doi: 10.1016/j.jbiomech.2012.12.006. Epub 2013 Jan 16.
2
Preparation and evaluation of osteogenic nano-MgO/PMMA bone cement for bone healing in a rat critical size calvarial defect.
J Mater Chem B. 2020 Jun 7;8(21):4575-4586. doi: 10.1039/d0tb00074d. Epub 2020 Apr 3.
3
Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement.
Int J Nanomedicine. 2014 May 27;9:2699-712. doi: 10.2147/IJN.S61964. eCollection 2014.
4
Material Mismatch Effect on the Fracture of a Bone-Composite Cement Interface.
Adv Mater Sci Appl. 2012 Dec 1;1(1):1-8. doi: 10.5963/AMSA0101001.
6
Fracture toughness of titanium-cement interfaces: effects of fibers and loading angles.
Int J Nanomedicine. 2014 Apr 1;9:1689-97. doi: 10.2147/IJN.S59253. eCollection 2014.
8
Modified and alternative bone cements can improve the induced membrane: Critical size bone defect model in rat femur.
Injury. 2024 Jul;55(7):111627. doi: 10.1016/j.injury.2024.111627. Epub 2024 May 21.
9
A procedure and criterion for bone cement fracture toughness tests.
Proc Inst Mech Eng H. 2004;218(6):445-50. doi: 10.1243/0954411042632144.
10
Interfacial properties of self-reinforced composite poly(methyl methacrylate).
J Biomed Mater Res. 1998 Summer;43(2):153-61. doi: 10.1002/(sici)1097-4636(199822)43:2<153::aid-jbm9>3.0.co;2-n.

引用本文的文献

1
Enhanced bone cement for fixation of prosthetic joint utilizing nanoparticles.
J Mater Sci Mater Med. 2025 Jan 13;36(1):10. doi: 10.1007/s10856-024-06848-1.
2
Engineering the Ratios of Nanoparticles Dispersed in Triphasic Nanocomposites for Biomedical Applications.
ACS Appl Mater Interfaces. 2025 Jan 15;17(2):3852-3865. doi: 10.1021/acsami.4c14712. Epub 2025 Jan 6.
3
Engineering Triphasic Nanocomposite Coatings on Pretreated Mg Substrates for Biomedical Applications.
ACS Appl Mater Interfaces. 2024 Oct 9;16(40):54716-54730. doi: 10.1021/acsami.4c13811. Epub 2024 Sep 29.
5
6
Development of Synthesis and Application of High Molecular Weight Poly(Methyl Methacrylate).
Polymers (Basel). 2022 Jun 28;14(13):2632. doi: 10.3390/polym14132632.
7
MgO Nanoparticles-Incorporated PCL/Gelatin-Derived Coaxial Electrospinning Nanocellulose Membranes for Periodontal Tissue Regeneration.
Front Bioeng Biotechnol. 2021 Mar 25;9:668428. doi: 10.3389/fbioe.2021.668428. eCollection 2021.
9
Surface degradation-enabled osseointegrative, angiogenic and antiinfective properties of magnesium-modified acrylic bone cement.
J Orthop Translat. 2019 May 9;17:121-132. doi: 10.1016/j.jot.2019.04.007. eCollection 2019 Apr.
10
Peen treatment on a titanium implant: effect of roughness, osteoblast cell functions, and bonding with bone cement.
Int J Nanomedicine. 2016 Feb 4;11:585-94. doi: 10.2147/IJN.S89376. eCollection 2016.

本文引用的文献

1
Nanomedicine for implants: a review of studies and necessary experimental tools.
Biomaterials. 2007 Jan;28(2):354-69. doi: 10.1016/j.biomaterials.2006.08.049.
2
Mixed-mode failure strength of implant-cement interface specimens with varying surface roughness.
J Biomech. 2011 Feb 24;44(4):780-3. doi: 10.1016/j.jbiomech.2010.10.037. Epub 2010 Nov 12.
4
Interfacial strength of novel PMMA/HA/nanoclay bone cement.
Biomed Mater Eng. 2008;18(6):367-75. doi: 10.3233/BME-2008-0553.
6
Alternative acrylic bone cement formulations for cemented arthroplasties: present status, key issues, and future prospects.
J Biomed Mater Res B Appl Biomater. 2008 Feb;84(2):301-19. doi: 10.1002/jbm.b.30873.
7
Effect of bone porosity on the mechanical integrity of the bone-cement interface.
J Bone Joint Surg Am. 2003 Oct;85(10):1901-8. doi: 10.2106/00004623-200310000-00006.
8
Ultrasonic characterization of orthotropic elastic bovine bones.
Ultrasonics. 2002 Jun;39(8):567-73. doi: 10.1016/s0041-624x(02)00261-5.
9
Residual stress effects on fracture energies of cement-bone and cement-implant interfaces.
Biomaterials. 2002 Apr;23(7):1595-601. doi: 10.1016/s0142-9612(01)00285-x.
10
Mixed-mode failure response of the cement-bone interface.
J Orthop Res. 2001 Nov;19(6):1153-61. doi: 10.1016/S0736-0266(01)00036-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验