Suppr超能文献

调控用于生物医学应用的三相纳米复合材料中分散的纳米颗粒比例

Engineering the Ratios of Nanoparticles Dispersed in Triphasic Nanocomposites for Biomedical Applications.

作者信息

Wetteland Cheyann, Xu Changlu, Wang Sebo Michelle, Zhang Chaoxing, Ang Elizabeth Juntilla, Azevedo Cole Gabriel, Liu Huinan Hannah

机构信息

Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.

Materials Science and Engineering Program, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States.

出版信息

ACS Appl Mater Interfaces. 2025 Jan 15;17(2):3852-3865. doi: 10.1021/acsami.4c14712. Epub 2025 Jan 6.

Abstract

Polymer/ceramic nanocomposites integrated the advantages of both polymers and ceramics for a wide range of biomedical applications, such as bone tissue repair. Here, we reported triphasic poly(lactic--glycolic acid) (PLGA, LA/GA = 90:10) nanocomposites with improved dispersion of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles using a process that integrated the benefits of ultrasonic energy and dual asymmetric centrifugal mixing. We characterized the microstructure and composition of the nanocomposites and evaluated the effects of the HA/MgO ratios on degradation behavior and cell-material interactions. The PLGA/HA/MgO nanocomposites were composed of 70 wt % PLGA and 30 wt % nanoparticles made of 20:10, 25:5, and 29:1% by weight of HA and MgO, respectively. The results showed that the nanocomposites had a homogeneous nanoparticle distribution and as-designed elemental composition. The cell study indicated that reducing the MgO content in the triphasic nanocomposite increased the BMSC adhesion density under both direct and indirect contact conditions. Specifically, after the 24 and 48 h of culture, the PLGA/HA/MgO group with a weight ratio of 70:29:1 (P70/H29/M1) exhibited the greatest average cell adhesion density under direct and indirect contact conditions among triphasic nanocomposites. During a 28-day degradation study, the mass loss of triphasic nanocomposites was 18 ± 2% for P70/H20/M10, 9 ± 2% for P70/H25/M5, and 7 ± 1% for P70/H29/M1, demonstrating that MgO nanoparticles accelerated the degradation of the nanocomposites. Postculture analysis showed that the pH values and Mg ion concentrations in the media increased with increasing MgO content in the nanocomposites. Triphasic nanocomposites provided different degradation profiles that can be tuned for different biomedical applications, especially when a shorter or longer period of degradation would be desirable for optimal bone tissue regeneration. The concentration and ratio of nanoparticles should be adjusted and optimized when other polymers with different degradation modes and rates are used in the nanocomposites.

摘要

聚合物/陶瓷纳米复合材料融合了聚合物和陶瓷的优点,可用于广泛的生物医学应用,如骨组织修复。在此,我们报道了一种采用超声能量和双不对称离心混合相结合工艺制备的三相聚(乳酸-乙醇酸)共聚物(PLGA,LA/GA = 90:10)纳米复合材料,其中羟基磷灰石(HA)和氧化镁(MgO)纳米颗粒的分散性得到了改善。我们对纳米复合材料的微观结构和组成进行了表征,并评估了HA/MgO比例对降解行为和细胞-材料相互作用的影响。PLGA/HA/MgO纳米复合材料由70 wt%的PLGA和30 wt%的纳米颗粒组成,其中HA和MgO的重量比分别为20:10、25:5和29:1。结果表明,纳米复合材料具有均匀的纳米颗粒分布和设计的元素组成。细胞研究表明,在直接和间接接触条件下,降低三相纳米复合材料中MgO的含量会增加骨髓间充质干细胞(BMSC)的黏附密度。具体而言,在培养24小时和48小时后,重量比为70:29:1(P70/H29/M1)的PLGA/HA/MgO组在三相纳米复合材料的直接和间接接触条件下均表现出最大的平均细胞黏附密度。在为期28天的降解研究中,P70/H20/M10的三相纳米复合材料质量损失为18±2%,P70/H25/M5为9±2%,P70/H29/M1为7±1%,表明MgO纳米颗粒加速了纳米复合材料的降解。培养后分析表明,培养基中的pH值和Mg离子浓度随着纳米复合材料中MgO含量的增加而升高。三相纳米复合材料提供了不同的降解曲线,可针对不同的生物医学应用进行调整,特别是在需要较短或较长降解时间以实现最佳骨组织再生的情况下。当在纳米复合材料中使用具有不同降解模式和速率的其他聚合物时,应调整和优化纳米颗粒的浓度和比例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d983/11744498/eaa6034acb66/am4c14712_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验