Suppr超能文献

从直系同源基因对推断层次同源物组。

Inferring hierarchical orthologous groups from orthologous gene pairs.

机构信息

Department of Computer Science, ETH Zurich, Zurich, Switzerland.

出版信息

PLoS One. 2013;8(1):e53786. doi: 10.1371/journal.pone.0053786. Epub 2013 Jan 14.

Abstract

Hierarchical orthologous groups are defined as sets of genes that have descended from a single common ancestor within a taxonomic range of interest. Identifying such groups is useful in a wide range of contexts, including inference of gene function, study of gene evolution dynamics and comparative genomics. Hierarchical orthologous groups can be derived from reconciled gene/species trees but, this being a computationally costly procedure, many phylogenomic databases work on the basis of pairwise gene comparisons instead ("graph-based" approach). To our knowledge, there is only one published algorithm for graph-based hierarchical group inference, but both its theoretical justification and performance in practice are as of yet largely uncharacterised. We establish a formal correspondence between the orthology graph and hierarchical orthologous groups. Based on that, we devise GETHOGs ("Graph-based Efficient Technique for Hierarchical Orthologous Groups"), a novel algorithm to infer hierarchical groups directly from the orthology graph, thus without needing gene tree inference nor gene/species tree reconciliation. GETHOGs is shown to correctly reconstruct hierarchical orthologous groups when applied to perfect input, and several extensions with stringency parameters are provided to deal with imperfect input data. We demonstrate its competitiveness using both simulated and empirical data. GETHOGs is implemented as a part of the freely-available OMA standalone package (http://omabrowser.org/standalone). Furthermore, hierarchical groups inferred by GETHOGs ("OMA HOGs") on >1,000 genomes can be interactively queried via the OMA browser (http://omabrowser.org).

摘要

层次同源群被定义为在感兴趣的分类范围内从单个共同祖先中衍生出来的一组基因。在广泛的上下文中,识别这样的群体是有用的,包括推断基因功能、研究基因进化动态和比较基因组学。层次同源群可以从调和的基因/物种树中推导出来,但这是一个计算成本很高的过程,许多基因组学数据库基于基因对的比较工作(“基于图的”方法)。据我们所知,目前只有一种用于基于图的层次分组推断的算法,但它的理论依据和实际性能在很大程度上尚未得到充分描述。我们在同源关系图和层次同源群之间建立了正式的对应关系。在此基础上,我们设计了 GETHOGs(“基于图的高效层次同源群推断技术”),这是一种直接从同源关系图推断层次分组的新算法,因此不需要基因树推断或基因/物种树调和。GETHOGs 在应用于完美输入时被证明可以正确重建层次同源群,并且提供了几个带有严格参数的扩展来处理不完美的输入数据。我们使用模拟和真实数据证明了它的竞争力。GETHOGs 作为免费提供的 OMA 独立包(http://omabrowser.org/standalone)的一部分实现。此外,GETHOGs 推断的层次组(“OMA HOGs”)可以通过 OMA 浏览器(http://omabrowser.org)在 >1000 个基因组上进行交互式查询。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e63/3544860/ddfdb539b17c/pone.0053786.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验