Suppr超能文献

快速立体光刻打印大尺寸生物相容性水凝胶模型。

Fast Stereolithography Printing of Large-Scale Biocompatible Hydrogel Models.

机构信息

Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.

Department of Industrial and Systems Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.

出版信息

Adv Healthc Mater. 2021 May;10(10):e2002103. doi: 10.1002/adhm.202002103. Epub 2021 Feb 15.

Abstract

Large size cell-laden hydrogel models hold great promise for tissue repair and organ transplantation, but their fabrication using 3D bioprinting is limited by the slow printing speed that can affect the part quality and the biological activity of the encapsulated cells. Here a fast hydrogel stereolithography printing (FLOAT) method is presented that allows the creation of a centimeter-sized, multiscale solid hydrogel model within minutes. Through precisely controlling the photopolymerization condition, low suction force-driven, high-velocity flow of the hydrogel prepolymer is established that supports the continuous replenishment of the prepolymer solution below the curing part and the nonstop part growth. The rapid printing of centimeter-sized hydrogel models using FLOAT is shown to significantly reduce the part deformation and cellular injury caused by the prolonged exposure to the environmental stresses in conventional 3D printing methods. Embedded vessel networks fabricated through multiscale printing allows media perfusion needed to maintain the high cellular viability and metabolic functions in the deep core of the large-sized models. The endothelialization of this vessel network allows the establishment of barrier functions. Together, these studies demonstrate a rapid 3D hydrogel printing method and represent a first step toward the fabrication of large-sized engineered tissue models.

摘要

大尺寸细胞填充水凝胶模型在组织修复和器官移植方面具有广阔的应用前景,但使用 3D 生物打印制造这些模型受到打印速度慢的限制,这可能会影响零件质量和包封细胞的生物活性。本文提出了一种快速水凝胶立体光刻打印(FLOAT)方法,可在数分钟内创建厘米级的多尺度固体水凝胶模型。通过精确控制光聚合条件,建立了低吸力驱动的、水凝胶预聚物的高速流动,这支持了在固化部分下方预聚物溶液的连续补充和不间断的部分生长。使用 FLOAT 快速打印厘米级水凝胶模型,显著减少了由于传统 3D 打印方法中长时间暴露于环境应力而导致的零件变形和细胞损伤。通过多尺度打印制造的嵌入式血管网络允许灌注介质,以维持大型模型深部核心的高细胞活力和代谢功能。血管网络的内皮化允许建立屏障功能。总之,这些研究展示了一种快速的 3D 水凝胶打印方法,是制造大型工程组织模型的第一步。

相似文献

3
Stereolithography 3D Bioprinting.立体光刻3D生物打印
Methods Mol Biol. 2020;2140:93-108. doi: 10.1007/978-1-0716-0520-2_6.

引用本文的文献

1
Light-based vat-polymerization bioprinting.基于光的光固化生物打印
Nat Rev Methods Primers. 2023;3. doi: 10.1038/s43586-023-00231-0. Epub 2023 Jun 22.
2
Lithography-based 3D printing of hydrogels.基于光刻的水凝胶3D打印
Nat Rev Bioeng. 2025 Feb;3(2):108-125. doi: 10.1038/s44222-024-00251-9. Epub 2024 Oct 16.
4
4D printing polymeric biomaterials for adaptive tissue regeneration.用于适应性组织再生的4D打印聚合物生物材料。
Bioact Mater. 2025 Feb 22;48:370-399. doi: 10.1016/j.bioactmat.2025.01.033. eCollection 2025 Jun.
10
Hydrogels in Soft Robotics: Past, Present, and Future.软机器人技术中的水凝胶:过去、现在与未来
ACS Nano. 2024 Aug 13;18(32):20817-20826. doi: 10.1021/acsnano.3c12200. Epub 2024 Aug 5.

本文引用的文献

4
Rapid continuous 3D printing of customizable peripheral nerve guidance conduits.可定制外周神经引导导管的快速连续3D打印
Mater Today (Kidlington). 2018 Nov;21(9):951-959. doi: 10.1016/j.mattod.2018.04.001. Epub 2018 Apr 27.
6
Skin bioprinting: the future of burn wound reconstruction?皮肤生物打印:烧伤创面重建的未来?
Burns Trauma. 2019 Feb 12;7:4. doi: 10.1186/s41038-019-0142-7. eCollection 2019.
10
3D Bioprinting for Organ Regeneration.用于器官再生的3D生物打印
Adv Healthc Mater. 2017 Jan;6(1). doi: 10.1002/adhm.201601118. Epub 2016 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验