Suppr超能文献

基于协方差的吸引子网络模型中的突触可塑性解释了自由操作学习中的快速适应。

Covariance-based synaptic plasticity in an attractor network model accounts for fast adaptation in free operant learning.

机构信息

Department of Neurobiology, Alexander Silberman Institute of Life Sciences, Interdisciplinary Center for Neural Computation, Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem 91904, Israel.

出版信息

J Neurosci. 2013 Jan 23;33(4):1521-34. doi: 10.1523/JNEUROSCI.2068-12.2013.

Abstract

In free operant experiments, subjects alternate at will between targets that yield rewards stochastically. Behavior in these experiments is typically characterized by (1) an exponential distribution of stay durations, (2) matching of the relative time spent at a target to its relative share of the total number of rewards, and (3) adaptation after a change in the reward rates that can be very fast. The neural mechanism underlying these regularities is largely unknown. Moreover, current decision-making neural network models typically aim at explaining behavior in discrete-time experiments in which a single decision is made once in every trial, making these models hard to extend to the more natural case of free operant decisions. Here we show that a model based on attractor dynamics, in which transitions are induced by noise and preference is formed via covariance-based synaptic plasticity, can account for the characteristics of behavior in free operant experiments. We compare a specific instance of such a model, in which two recurrently excited populations of neurons compete for higher activity, to the behavior of rats responding on two levers for rewarding brain stimulation on a concurrent variable interval reward schedule (Gallistel et al., 2001). We show that the model is consistent with the rats' behavior, and in particular, with the observed fast adaptation to matching behavior. Further, we show that the neural model can be reduced to a behavioral model, and we use this model to deduce a novel "conservation law," which is consistent with the behavior of the rats.

摘要

在自由操作实验中,被试可以随意在随机产生奖励的目标之间进行交替。这些实验中的行为通常具有以下特征:(1)停留时间呈指数分布,(2)目标上花费的相对时间与其在总奖励数中的相对份额相匹配,以及(3)在奖励率变化后的快速适应。这些规律的神经机制在很大程度上是未知的。此外,当前的决策神经网络模型通常旨在解释离散时间实验中的行为,在离散时间实验中,每一次试验只做出一次决策,这使得这些模型难以扩展到更自然的自由操作决策情况。在这里,我们表明,基于吸引子动力学的模型,其中通过噪声诱导转换,并且通过基于协方差的突触可塑性形成偏好,可以解释自由操作实验中的行为特征。我们将这种模型的一个特定实例与大鼠的行为进行了比较,大鼠在同时进行的可变间隔奖励计划中,通过两个杠杆对奖励性脑刺激做出反应(Gallistel 等人,2001)。我们表明,该模型与大鼠的行为一致,特别是与观察到的快速适应匹配行为一致。此外,我们表明,神经模型可以简化为行为模型,并且我们使用该模型推导出一个新的“守恒定律”,该定律与大鼠的行为一致。

相似文献

引用本文的文献

1
Fast adaptation to rule switching using neuronal surprise.利用神经元惊讶实现快速规则切换适应。
PLoS Comput Biol. 2024 Feb 20;20(2):e1011839. doi: 10.1371/journal.pcbi.1011839. eCollection 2024 Feb.
5
Spatial generalization in operant learning: lessons from professional basketball.操作性学习中的空间泛化:来自职业篮球的经验教训。
PLoS Comput Biol. 2014 May 22;10(5):e1003623. doi: 10.1371/journal.pcbi.1003623. eCollection 2014 May.
7
Dynamical regimes in neural network models of matching behavior.匹配行为的神经网络模型中的动力学状态。
Neural Comput. 2013 Dec;25(12):3093-112. doi: 10.1162/NECO_a_00522. Epub 2013 Sep 18.
9
A multistep general theory of transition to addiction.多步骤一般成瘾理论。
Psychopharmacology (Berl). 2013 Oct;229(3):387-413. doi: 10.1007/s00213-013-3224-4. Epub 2013 Aug 21.

本文引用的文献

3
Bayesian sampling in visual perception.贝叶斯抽样在视觉感知中的应用。
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12491-6. doi: 10.1073/pnas.1101430108. Epub 2011 Jul 8.
6
Synaptic theory of replicator-like melioration.复制子类似改进的突触理论。
Front Comput Neurosci. 2010 Jun 17;4:17. doi: 10.3389/fncom.2010.00017. eCollection 2010.
10
Synaptic plasticity in the basal ganglia.基底神经节中的突触可塑性。
Behav Brain Res. 2009 Apr 12;199(1):119-28. doi: 10.1016/j.bbr.2008.10.030. Epub 2008 Nov 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验