Suppr超能文献

活性/非活性染色质结构域的动态模拟

Dynamic simulation of active/inactive chromatin domains.

作者信息

Odenheimer Jens, Kreth Gregor, Heermann Dieter W

机构信息

Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, D-69120 Heidelberg, Germany.

出版信息

J Biol Phys. 2005 Dec;31(3-4):351-63. doi: 10.1007/s10867-005-7286-3.

Abstract

In the present study a model for the compactification of the 30 nm chromatin fibre into higher order structures is suggested. The idea is that basically every condensing agent (HMG/SAR, HP1, cohesin, condensin, DNA-DNA interaction …) can be modeled as an effective attractive potential of specific chain segments. This way the formation of individual 1 Mbp sized rosettes from a linear chain could be observed. We analyse how the size of these rosettes depends on the number of attractive segments and on the segment length. It turns out that 8-20 attractive segments per 1 Mbp domain produces rosettes of 300-800 nm in diameter. Furthermore, our results show that the size of the rosettes is relatively insensitive to the segment length.

摘要

在本研究中,我们提出了一个将30纳米染色质纤维压缩成更高阶结构的模型。其核心观点是,基本上每种凝聚剂(HMG/SAR、HP1、黏连蛋白、凝聚素、DNA-DNA相互作用……)都可以被建模为特定链段的有效吸引势。通过这种方式,可以观察到从线性链形成单个1兆碱基大小的玫瑰花结。我们分析了这些玫瑰花结的大小如何依赖于吸引段的数量和段长度。结果表明,每1兆碱基结构域有8 - 20个吸引段时会产生直径为300 - 800纳米的玫瑰花结。此外,我们的结果表明,玫瑰花结的大小对段长度相对不敏感。

相似文献

1
Dynamic simulation of active/inactive chromatin domains.
J Biol Phys. 2005 Dec;31(3-4):351-63. doi: 10.1007/s10867-005-7286-3.
4
The spatial segregation of pericentric cohesin and condensin in the mitotic spindle.
Mol Biol Cell. 2013 Dec;24(24):3909-19. doi: 10.1091/mbc.E13-06-0325. Epub 2013 Oct 23.
6
Identification of a rosette-enriched chromatin fraction from mouse fibroblast nuclei.
Arch Biochem Biophys. 1988 Jun;263(2):334-48. doi: 10.1016/0003-9861(88)90644-3.
7
The detailed 3D multi-loop aggregate/rosette chromatin architecture and functional dynamic organization of the human and mouse genomes.
Epigenetics Chromatin. 2016 Dec 24;9:58. doi: 10.1186/s13072-016-0089-x. eCollection 2016.
9
Geometric partitioning of cohesin and condensin is a consequence of chromatin loops.
Mol Biol Cell. 2018 Nov 1;29(22):2737-2750. doi: 10.1091/mbc.E18-02-0131. Epub 2018 Sep 12.
10
Condensin II Counteracts Cohesin and RNA Polymerase II in the Establishment of 3D Chromatin Organization.
Cell Rep. 2019 Mar 12;26(11):2890-2903.e3. doi: 10.1016/j.celrep.2019.01.116.

引用本文的文献

1
The challenge of chromatin model comparison and validation: A project from the first international 4D Nucleome Hackathon.
PLoS Comput Biol. 2025 Aug 19;21(8):e1013358. doi: 10.1371/journal.pcbi.1013358. eCollection 2025 Aug.
2
Polymer models of chromatin organization in virally infected cells.
Biochem Soc Trans. 2025 Feb 7;53(1):249-58. doi: 10.1042/BST20240598.
3
Nonequilibrium Biophysical Processes Influence the Large-Scale Architecture of the Cell Nucleus.
Biophys J. 2020 May 5;118(9):2229-2244. doi: 10.1016/j.bpj.2019.11.017. Epub 2019 Nov 22.
4
Localization microscopy reveals expression-dependent parameters of chromatin nanostructure.
Biophys J. 2010 Sep 8;99(5):1358-67. doi: 10.1016/j.bpj.2010.05.043.
5
Entropic organization of interphase chromosomes.
J Cell Biol. 2009 Sep 21;186(6):825-34. doi: 10.1083/jcb.200903083. Epub 2009 Sep 14.
6
Brownian dynamics simulations reveal regulatory properties of higher-order chromatin structures.
Eur Biophys J. 2009 Jul;38(6):749-56. doi: 10.1007/s00249-009-0486-1. Epub 2009 Jun 18.
7
The influence of the cylindrical shape of the nucleosomes and H1 defects on properties of chromatin.
Biophys J. 2008 Jun;94(11):4165-72. doi: 10.1529/biophysj.107.113902. Epub 2008 Jan 30.
8
Nanostructure of specific chromatin regions and nuclear complexes.
Histochem Cell Biol. 2006 Jan;125(1-2):75-82. doi: 10.1007/s00418-005-0096-7. Epub 2005 Nov 12.

本文引用的文献

1
The physics of chromatin.
J Phys Condens Matter. 2015 Feb 18;27(6):060301. doi: 10.1088/0953-8984/27/6/060301. Epub 2015 Jan 7.
3
Torsional deformation of double helix in interaction and aggregation of DNA.
J Phys Chem B. 2004 May 20;108(20):6508-18. doi: 10.1021/jp0380475.
4
HP1 and the dynamics of heterochromatin maintenance.
Nat Rev Mol Cell Biol. 2004 Apr;5(4):296-304. doi: 10.1038/nrm1355.
5
A two-step scaffolding model for mitotic chromosome assembly.
Dev Cell. 2003 Apr;4(4):467-80. doi: 10.1016/s1534-5807(03)00092-3.
6
Structural and dynamic functions establish chromatin domains.
Mol Cell. 2003 Jan;11(1):237-48. doi: 10.1016/s1097-2765(03)00010-8.
7
Computer simulation of the 30-nanometer chromatin fiber.
Biophys J. 2002 Jun;82(6):2847-59. doi: 10.1016/S0006-3495(02)75627-0.
8
Making contacts on a nucleic acid polymer.
Trends Biochem Sci. 2001 Dec;26(12):733-40. doi: 10.1016/s0968-0004(01)01978-8.
9
Chromosome territories, nuclear architecture and gene regulation in mammalian cells.
Nat Rev Genet. 2001 Apr;2(4):292-301. doi: 10.1038/35066075.
10
DNA folding: structural and mechanical properties of the two-angle model for chromatin.
Biophys J. 2001 Apr;80(4):1940-56. doi: 10.1016/S0006-3495(01)76164-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验