Micro- and Nano-manufacturing Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
Langmuir. 2013 Feb 5;29(5):1351-5. doi: 10.1021/la304986e. Epub 2013 Jan 25.
The ability to generate a large area micropillar array with spatially varying heights allows for exploring numerous new interesting applications in biotechnology, surface engineering, microfluidics, and so forth. This Letter presents a clever and straightforward method, called electrically modulated microtransfer molding (EM3), for generating such unique microstructures from a silicon mold arrayed with microholes. The key to the process is an application of electrically tunable wettability caused by a spatially modulated voltage, which electrohydrodynamically drives a photocurable and dielectric prepolymer to fill the microholes to a depth depending on the voltage amplitude. Using EM3, micropillar arrays with stepwise or continuously varying heights are successfully fabricated, with the diameter scalable to 1.5 μm and with the maximum height being equal to the depth of the high-aspect-ratio (more than 10:1) microholes.
大面积具有空间变化高度的微柱阵列的生成能力,为生物技术、表面工程、微流控等领域探索了许多新的有趣应用。本文提出了一种巧妙而简单的方法,称为电调制微传递模塑(EM3),可从具有微孔的硅模具阵列生成这种独特的微结构。该工艺的关键是应用由空间调制电压引起的电可调润湿性,该润湿性通过电动力学驱动光固化和介电预聚物填充微孔,填充深度取决于电压幅度。使用 EM3,成功地制造了具有阶梯式或连续变化高度的微柱阵列,直径可扩展至 1.5 μm,最大高度等于高深宽比(大于 10:1)微孔的深度。