Suppr超能文献

使用聚类方法从液压床传感器进行心跳检测。

Heartbeat detection from a hydraulic bed sensor using a clustering approach.

作者信息

Rosales Licet, Skubic Marjorie, Heise David, Devaney Michael J, Schaumburg Mark

机构信息

Department of Electrical and Computer Engineering, University of Missouri, Columbia, MO 65211, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2383-7. doi: 10.1109/EMBC.2012.6346443.

Abstract

Encouraged by previous performance of a hydraulic bed sensor, this work presents a new hydraulic transducer configuration which improves the system's ability to capture a heartbeat signal from four subjects with different body weight and height, gender, age and cardiac history. It also proposes a new approach for detecting the occurrence of heartbeats from ballistocardiogram (BCG) signals through the use of the k-means clustering algorithm, based on finding the location of the J-peaks. Preliminary testing showed that the new transducer arrangement was able to capture the occurrence of heartbeats for all the participants, and the clustering approach achieved correct heartbeat detection ranging from 98.6 to 100% for three of them. Some considerations are discussed regarding adjustments that can be done in order to increase the correct detection of heartbeats for the participant whose percentage of correct detection ranged from 71.0 to 92.5%.

摘要

受液压床传感器先前性能的鼓舞,这项工作提出了一种新的液压传感器配置,该配置提高了系统从四名体重、身高、性别、年龄和心脏病史不同的受试者身上捕捉心跳信号的能力。它还提出了一种新方法,通过使用k均值聚类算法,基于找到J波峰的位置,从心冲击图(BCG)信号中检测心跳的发生。初步测试表明,新的传感器布置能够捕捉到所有参与者的心跳情况,对于其中三名参与者,聚类方法实现的正确心跳检测率在98.6%至100%之间。对于正确检测率在71.0%至92.5%之间的参与者,讨论了为提高心跳正确检测率可进行的一些调整。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验