Suppr超能文献

用于高维脑机接口实时控制的闭环反馈系统的开发。

Development of a closed-loop feedback system for real-time control of a high-dimensional Brain Machine Interface.

作者信息

Putrino David, Wong Yan T, Vigeral Mariana, Pesaran Bijan

机构信息

Center for Neural Science, New York University, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4567-70. doi: 10.1109/EMBC.2012.6346983.

Abstract

As the field of neural prosthetics advances, Brain Machine Interface (BMI) design requires the development of virtual prostheses that allow decoding algorithms to be tested for efficacy in a time- and cost-efficient manner. Using an x-ray and MRI-guided skeletal reconstruction, and a graphic artist's rendering of an anatomically correct macaque upper limb, we created a virtual avatar capable of independent movement across 27 degrees-of-freedom (DOF). Using a custom software interface, we animated the avatar's movements in real-time using kinematic data acquired from awake, behaving macaque subjects using a 16 camera motion capture system. Using this system, we demonstrate real-time, closed-loop control of up to 27 DOFs in a virtual prosthetic device. Thus, we describe a practical method of testing the efficacy of high-complexity BMI decoding algorithms without the expense of fabricating a physical prosthetic.

摘要

随着神经假体领域的发展,脑机接口(BMI)设计需要开发虚拟假体,以便能够以高效省时且经济的方式测试解码算法的有效性。通过X射线和MRI引导的骨骼重建,以及图形艺术家对解剖学上正确的猕猴上肢的渲染,我们创建了一个能够在27个自由度(DOF)上独立运动的虚拟化身。使用定制的软件界面,我们利用从清醒、行为中的猕猴受试者通过16相机运动捕捉系统获取的运动学数据实时为化身的动作制作动画。利用该系统,我们展示了在虚拟假体装置中对多达27个自由度的实时闭环控制。因此,我们描述了一种测试高复杂性BMI解码算法有效性的实用方法,而无需花费制造物理假体的成本。

相似文献

1
Development of a closed-loop feedback system for real-time control of a high-dimensional Brain Machine Interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4567-70. doi: 10.1109/EMBC.2012.6346983.
2
Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):750-760. doi: 10.1109/TNSRE.2016.2593696. Epub 2016 Jul 21.
3
Towards closed-loop decoding of dexterous hand movements using a virtual integration environment.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1703-6. doi: 10.1109/IEMBS.2008.4649504.
4
A training platform for many-dimensional prosthetic devices using a virtual reality environment.
J Neurosci Methods. 2015 Apr 15;244:68-77. doi: 10.1016/j.jneumeth.2014.03.010. Epub 2014 Apr 13.
5
Continuous decoding of intended movements with a hybrid kinetic and kinematic brain machine interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5802-6. doi: 10.1109/IEMBS.2011.6091436.
6
Rhesus monkeys learn to control a directional-key inspired brain machine interface via bio-feedback.
PLoS One. 2024 Jan 17;19(1):e0286742. doi: 10.1371/journal.pone.0286742. eCollection 2024.
7
Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
J Neural Eng. 2016 Jun;13(3):036006. doi: 10.1088/1741-2560/13/3/036006. Epub 2016 Apr 11.
9
A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces.
J Neurophysiol. 2011 Apr;105(4):1932-49. doi: 10.1152/jn.00503.2010. Epub 2010 Oct 13.
10
Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
J Neurosci Methods. 2009 Jun 15;180(2):224-33. doi: 10.1016/j.jneumeth.2009.03.010. Epub 2009 Mar 25.

引用本文的文献

1
Utilizing movement synergies to improve decoding performance for a brain machine interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:289-92. doi: 10.1109/EMBC.2013.6609494.

本文引用的文献

1
Evaluation of a noninvasive command scheme for upper-limb prostheses in a virtual reality reach and grasp task.
IEEE Trans Biomed Eng. 2013 Mar;60(3):792-802. doi: 10.1109/TBME.2012.2185494. Epub 2012 Jan 23.
2
Real-time animation software for customized training to use motor prosthetic systems.
IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):134-42. doi: 10.1109/TNSRE.2011.2178864. Epub 2011 Dec 16.
4
A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces.
J Neurophysiol. 2011 Apr;105(4):1932-49. doi: 10.1152/jn.00503.2010. Epub 2010 Oct 13.
5
A real-time virtual integration environment for the design and development of neural prosthetic systems.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:615-9. doi: 10.1109/IEMBS.2008.4649228.
7
8
Brain-machine interfaces to restore motor function and probe neural circuits.
Nat Rev Neurosci. 2003 May;4(5):417-22. doi: 10.1038/nrn1105.
9
Connecting cortex to machines: recent advances in brain interfaces.
Nat Neurosci. 2002 Nov;5 Suppl:1085-8. doi: 10.1038/nn947.
10
Actions from thoughts.
Nature. 2001 Jan 18;409(6818):403-7. doi: 10.1038/35053191.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验