Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai, People's Republic of China.
IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, People's Republic of China.
PLoS One. 2024 Jan 17;19(1):e0286742. doi: 10.1371/journal.pone.0286742. eCollection 2024.
Brain machine interfaces (BMI) connect brains directly to the outside world, bypassing natural neural systems and actuators. Neuronal-activity-to-motion transformation algorithms allow applications such as control of prosthetics or computer cursors. These algorithms lie within a spectrum between bio-mimetic control and bio-feedback control. The bio-mimetic approach relies on increasingly complex algorithms to decode neural activity by mimicking the natural neural system and actuator relationship while focusing on machine learning: the supervised fitting of decoder parameters. On the other hand, the bio-feedback approach uses simple algorithms and relies primarily on user learning, which may take some time, but can facilitate control of novel, non-biological appendages. An increasing amount of work has focused on the arguably more successful bio-mimetic approach. However, as chronic recordings have become more accessible and utilization of novel appendages such as computer cursors have become more universal, users can more easily spend time learning in a bio-feedback control paradigm. We believe a simple approach which leverages user learning and few assumptions will provide users with good control ability. To test the feasibility of this idea, we implemented a simple firing-rate-to-motion correspondence rule, assigned groups of neurons to virtual "directional keys" for control of a 2D cursor. Though not strictly required, to facilitate initial control, we selected neurons with similar preferred directions for each group. The groups of neurons were kept the same across multiple recording sessions to allow learning. Two Rhesus monkeys used this BMI to perform a center-out cursor movement task. After about a week of training, monkeys performed the task better and neuronal signal patterns changed on a group basis, indicating learning. While our experiments did not compare this bio-feedback BMI to bio-mimetic BMIs, the results demonstrate the feasibility of our control paradigm and paves the way for further research in multi-dimensional bio-feedback BMIs.
脑机接口(BMI)将大脑直接连接到外部世界,绕过自然的神经系统和执行器。神经元活动到运动转换算法允许应用,如假肢或计算机光标控制。这些算法位于仿生控制和生物反馈控制之间的频谱内。仿生控制方法依赖于越来越复杂的算法,通过模拟自然的神经系统和执行器关系来解码神经活动,同时专注于机器学习:解码器参数的监督拟合。另一方面,生物反馈方法使用简单的算法,主要依赖于用户学习,这可能需要一些时间,但可以促进对新的非生物附属物的控制。越来越多的工作集中在更成功的仿生控制方法上。然而,随着慢性记录变得更容易获得,以及计算机光标等新型附属物的使用变得更加普遍,用户可以更容易地在生物反馈控制范式中花费时间进行学习。我们相信,一种利用用户学习和少量假设的简单方法将为用户提供良好的控制能力。为了测试这个想法的可行性,我们实现了一种简单的发放率到运动对应规则,将神经元组分配给虚拟“方向键”,以控制二维光标。虽然不是严格要求的,但为了便于初始控制,我们为每组选择具有相似首选方向的神经元。在多个记录会话中保持神经元组不变,以允许学习。两只恒河猴使用这种 BMI 来执行中心到光标移动任务。经过大约一周的训练,猴子完成任务的效果更好,神经元信号模式在组的基础上发生变化,表明正在学习。虽然我们的实验没有将这种生物反馈 BMI 与仿生 BMI 进行比较,但结果证明了我们控制范式的可行性,并为进一步研究多维生物反馈 BMI 铺平了道路。